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I. INTRODUCTION

In this report, the author introduces a expectation maximization (EM) based belief propagation algo-

rithm (BP) for sparse recovery, named EM-BP. The algorithm have been mainly devised by Krzakala et

al. from ParisTech in France [1]. The properties of EM-BP are as given below:

1) It is A low-computation approach to sparse recovery,

2) It works well without the prior knowledge of the signal,

3) It overcomes the l1 phase transition given by Donoho and Tanner [11] under the noiseless setup,

4) It is further improved in conjunction with seeding matrices (or spatial coupling matrices).

The main purpose of this report regenerates a precise description of EM-BP algorithm construction

from the reference paper [1]. It might be very helpful for understanding of EM-BP algorithm, and an

answer for such a question: How and why does the algorithm work ? Therefore, we will focus on the

explanation of 1) and 2) in the properties, and just show the result of the paper with respect to that of

3) and 4).

In addition to EM-BP, the belief propagation approach to the sparse recovery problem has been widely

investigated in [2],[3],[4],[5],[6],[7].

II. PROBLEM SETUP

In the sparse recovery problem, the aim is to recovery a sparse signal X ∈ RN whose elements have

nonzero value independently each other, with a probability rate q called sparsity rate. Therefore, the q

determines the density of signal X. Then, the algorithm performs the recovery from the measurements

Y ∈ RM , given as

Y = ΦX + N, (1)
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where Φ ∈ RM×N is a fat measurement matrix with M < N , and N ∈ RM denotes a additive Gaussian

noise vector following N (0, Iσ2
N ).

III. ALGORITHM CONSTRUCTION OF EM-BP

Krzakala et al. has taken a probabilistic approach to devise EM-BP. From the Bayesian point of view,

the posterior density of the signal X is represented in the form of Posterior = Prior× Likelihood
Evidence as

fX(x|y,Φ) = fX(x|Φ)× fY(y|Φ,X)

fY(y|Φ)
. (2)

Then, using the knowledge of z and Φ, the signal posterior is given as

fX(x|y,Φ) =
1

C
fX(x)×

M∏
j=1

1√
2πσ2

N

exp

[
− 1

2σ2
Nj

(yj −
∑N

i=1
φjixi)

2

]
, (3)

where C is a normalization constant for
∫
fX(x|y,Φ) dx = 1. In addition, we consider a mixture type

prior density function represented as

fX(x) :=

N∏
i=1

[(1− q)δ0 + qθ(xi)], (4)

where θ(xi) is a Gaussian PDF with mean x̄ and variance σ2
X .

Exact finding of the signal posterior is computationally infeasible. Therefore, researchers have employed

BP as a standard approach to approximate the signal posterior where BP finds marginal posterior density

of each signal element Xi. In addition, Guo et al. showed that the marginal posterior finding is exact if

the matrix Φ is a sparse matrix and N → ∞ [8],[9],[10]. BP seeks the signal posterior by iteratively

exchanging probabilistic messages over the signal elements, where the messages are classically described

as

Measurement to signal (MtS) message :

mj→i(xi) :=
1

Cj→i

∫
{xk}k 6=i

∏
k 6=i

mk→j(xi)× exp

− 1

2σ2
N

(
∑
k 6=i

φjkxk + φjixi − yj)2

 ∏
k 6=i

dxi

 , (5)

Signal to measurement (StM) message :

mi→j(xi) :=
1

Zi→j
[(1− q)δ0 + qθ(xi)]×

∏
k 6=j

mk→i(xi), (6)

where Cj→i and Zi→j are normalization constants to make the messages as PDFs. Then, the marginal

posterior approximately is obtained as

fXi(x|y,Φ)
BP
=

1

Ci
[(1− q)δxi + qθ(xi)]×

∏
k

mk→i(xi). (7)
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However, the message update rule in (5) and (6) is practically intractable because each BP message

is probability density function (PDF). Therefore, we need to convert the density-passing procedure to a

parameter-passing procedure using some relaxation techniques.

Using Hubbard-Stratonovich transformation (HST) from spin glass theory which is

exp

(
− w2

2σ2

)
=

1√
2πσ2

∫
exp

(
− λ2

2σ2
+
iwλ

σ2

)
dλ, (8)

the exponent in (5) can be rewritten as

exp

[
− 1

2σ2
Nj

(yj −
∑N

i=1
φjixi)

2

]
= exp

−
(∑
k 6=i

φjkxk

)2

2σ2
Nj︸ ︷︷ ︸

Here, HST applied

−

∑
k 6=i

φjkxk(φjixi − yj)

σ2
Nj

− (φjixi − yj)2

2σ2
Nj


=

1√
2πσ2

Nj

∫
λ

exp

− λ2

2σ2
Nj

+

∑
k 6=i

φjkxk(φjixi − yj + iλ)

σ2
Nj

− (φjixi − yj)2

2σ2
Nj

 dλ. (9)

By applying (9) to (5), we have

mj→i(xi) =
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×

 ∫
{xk}k 6=i

∏
k 6=i

mk→j(xi) exp

( ∑
k 6=i

φjkxk(φjixi−yj+iλ)

σ2
Nj

) ∏
k 6=i

dxi

 dλ

(10)

In (10), we observe that the integration over {xk}k 6=i can be decomposed into integration over each

scalar xk. In addition, the integration over scalar xk takes the form of the moment generating function.

Therefore,

mj→i(xi) =
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×
∏
k 6=i

 ∫
{xk}k 6=i

mk→j(xi) exp

(
xkφjk(φjixi−yj+iλ)

σ2
Nj

)
dxi

 dλ

=
exp

(
− (φjixi−yj)

2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

∫
λ

exp

(
− λ2

2σ2
Nj

)
×
∏
k 6=i

EXk

[
exp

(
xkφjk(φjixi−yj+iλ)

σ2
Nj

)]
dλ

(11)

By assuming that each scalar Xk is Gaussian distributed during the BP-iteration with mean µi→j and
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variance σ2
i→j , we can approximate the MtS message expression as

mj→i(xi) ≈
exp

(
− (φjixi−yj)2

2σ2
Nj

)
Cj→i

√
2πσ2

Nj

×

×
∫
λ

exp

(
− λ2

2σ2
Nj

)∏
k 6=i

exp

µk→jφjk(φjixi − yj + iλ)

σ2
Nj

+
σ2
k→j
2

(
φjk(φjixi − yj + iλ)

σ2
Nj

)2
 dλ.

(12)

By evaluating the Gaussian integration over λ, the expression in (12) becomes

mj→i(xi) '
√
Aj→i/2π

φjiCj→i
× exp

(
−x

2
i

2
Aj→i + xiBj→i +

B2
j→i

2Aj→i

)
. (13)

where

Aj→i :=
φ2
ji

σ2
Nj

+
∑
k 6=j

σ2
k→jφ

2
jk

, (14)

Bj→i :=

φji(yj −
∑
k 6=j

µk→jφjk)

σ2
Nj

+
∑
k 6=j

σ2
k→jφ

2
jk

. (15)

Then, the expression of the StM message is rewritten as

mi→j(xi) :=
1

Z̃i→j
[(1− q)δ0 + qθ(xi)]× exp

−
x2
i

2

∑
k 6=j

Ak→i + xi
∑
k 6=j

Bk→i +
1

2

(∑
k 6=j

Bk→j

)2

∑
k 6=j

Ak→j

 ,

(16)

where we use an approximation
∑
k 6=j

B2
k→j ≈

(∑
k 6=j

Bk→j

)2

. The exponent can be rewritten as

−x
2
i

2

∑
k 6=j

Ak→i + xi
∑
k 6=j

Bk→i +
1

2

(∑
k 6=j

Bk→j

)2

∑
k 6=j

Ak→j

= − 1

2 1∑
k 6=j

Ak→i

x2
i − 2

∑
k 6=j

Bk→i∑
k 6=j

Ak→i
+


∑
k 6=j

Bk→i∑
k 6=j

Ak→i


2 = −

(
xi −

∑
k 6=j

Bk→i∑
k 6=j

Ak→i

)2

2 1∑
k 6=j

Ak→i

(17)
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Hence, equations (14) and (15) together with (19) fully describe the iterative BP-process. We define

two variable given as

Σ2
i :=

1∑
k 6=j

Ak→i
, Ri :=

∑
k 6=j

Bk→i∑
k 6=j

Ak→i
, (18)

Using the notations, we rewrite the expression of the StM message given as Then, the expression of the

StM message is rewritten as

mi→j(xi) :=
1

Z̃i→j
[(1− q)δ0 + qθ(xi)]× exp

(
−(xi −Ri)2

2Σ2
i

)
, (19)

Then, the mean µk→j and variance σ2
k→j of the StM message are calculated as

µi→j :=

∫
Xi

ximi→j(xi)dxi

=
q

Z(Σ2
i , Ri)

∫
Xi

xiθ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi

=
q

Z(Σ2
i , Ri)

×
Σi(xΣ2

i +Rσ2
X)

(Σ2
i + σ2

X)
3/2

exp

(
− (R− x)2

2(Σ2
i + σ2

X)

)
, (20)

and

σ2
i→j :=

∫
Xi

x2
imi→j(xi)dxi − µ2

i→j

=
q

Z(Σ2
i , Ri)

∫
Xi

x2
i θ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi − µ2

i→j

=
q(1− q) exp

(
− R2

i

2Σ2
i
− (R−x)2

2(Σ2
i+σ

2
X)

)
Σi

(Σ2
i+σ

2
X)5/2

(
σ2
XΣ2

i (Σ
2
i + σ2

X) + (xΣ2
i +Rσ2

X)
2
)

Z(Σ2
i , Ri)

2

+
q2 exp

(
− (R−x)2

2(Σ2
i+σ

2
X)

)
σ2
XΣ4

i

(Σ2
i+σ

2
X)2

Z(Σ2
i , Ri)

2 , (21)

where the normalization constant is

Z(Σ2
i , Ri) : = (1− q)

∫
Xi

δ0 exp

(
−(xi −Ri)2

2Σ2
i

)
dxi + q

∫
Xi

θ(xi) exp

(
−(xi −Ri)2

2Σ2
i

)
dxi

= (1− q) exp

(
− R2

i

2Σ2
i

)
+ q

Σi√
Σ2
i + σ2

X

exp

(
− (R− x)2

2(Σ2
i + σ2

X)

)
. (22)

The authors stated that the parameters x̄, σ2
X , and q of the prior density fX(X) can be learned and

updated at every iteration. A statistical approach for the parameter learning is the use of EM. For the object
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function in EM, they used Bethe free-entropy. It is known that BP algorithm is constructed by applying

Lagrange multipliers to Bethe entropy [12]. Therefore, the fixed point of BP-iteration corresponds to the

stationary points of the Bethe free-entropy minimization, in the signal posterior finding problems. For

details about the relationship between Bethe free-entropy and BP, please see Yedidia’s paper.

The Bethe entropy is defined as

HBethe := −
N∑
i

H(Zxi)−
M∑
j

H(Zyj ) +

M∑
j

∑
i∈N(j)

H(Zxi), (23)

where the concept of free-entropy, defined as H(Z) := logZ, is used and Zxi and Zyj are an approximated

marginal partition function of x, that is,

Zxi =

∫
[(1− q)δxi + qθ(xi)]×

∏
j

mj→i(xi)dxi, (24)

Zyj =

∫ ∏
i

mi→j(xi)× exp

[
− 1

2σ2
N

(
∑
i

φjixi − yj)2

]∏
i

(dxi) . (25)

Thus, the parameters (x̄, σX , q) are learned by seeking the stationary point of the Bethe free-entropy

function given in (23). We update the parameter for the prior knowledge from

x =

∑
i
µi

Nq
(26)

σ2
X =

∑
i

(σ2
i + µ2

i )

Nq
− x2 (27)

q =

∑
i

1/σ2
X+

∑
j Aj→i∑

j Bj→i+x/σ
2
X
µi∑

i

(
1− q + q

σX
√

1/σ2
X+

∑
j Aj→i

exp
(

(
∑
j Bj→i+x/σ

2
X)2

2(1/σ2
X+

∑
j Aj→i)

− x2

2σ2
X

))−1 . (28)

I implemented the EM-BP algorithm using the equations of (14), (15), (20), (21), (22), (26), (27) in C

language. I did not update the sparsity rate q in the BP-iteration. The performance is not working well

as shown in Fig.1. I need to check my implementation by translating the code to MATLAB. I think the

EM update not much improve the performance. So, we need to modify the update rule to elementwise

update rule like SuPrEM Algorithm.
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