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Short summary: Compressive sensing enables the receiver to sample below the 

Shannon-Nyquist sampling rate, which may lead to a decrease power efficiency and 

production cost. This paper investigates the use of CS in a general Code Division Multiple 

Access (CDMA) receiver. Furthermore, they numerically evaluate the proposed receiver in 

terms of bit error rate under different signal to noise ratio conditions and compare it with 

other receiver structures. 

 

I. INTRODUCTION 

 As wireless communication devices are becoming more and more widespread and 

ubiquitous, the need for power efficiency and low production cost becomes 

paramount. 

 Recently, a new concept termed CS has been attracting more and more attention in the 

signal processing community. If a signal is sparse in some arbitrary basis, it may be 

sampled at a rate lower than the Nyquist frequency. 

 In the spread spectrum area, some researchers have studied the general use of CS for 

spread spectrum communication systems.  

 In their work they apply CS to a general CDMA system. And they show that a random 

demodulation implementation may be used to subsample the CDMA signal, but they 

also develop a simplified version of the RD which performs equally well for CDMA 

signals but is simpler and cheaper to implement.  

II. SIGNAL MODEL 

Each slot contains an independent CDMA signal and the slots decoded sequentially and 

independently of each other. 
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For one slot, define a discrete QPSK baseband signal, 1Nx  as: 

 

 x Ψα  (1) 

 

where { 1}N NS 

  Ψ  is an orthogonal or near orthogonal dictionary, containing 

spreading waveforms for transmission, S  is the subset of { 1}N N  that contains orthogonal or 

near-orthogonal dictionaries and 
1{ 1 ,0}Nj   α  is a sparse vector, that selects which 

spreading waveform(s) and what QPSK constellation point(s) to send. 

Each node has a unique CDMA sequence assigned, which it uses to transfer information and 

each node does not know which neighbors it has, but it knows all possible CDMA sequences. 

Note that in this signal model α  is defined so that all users have identical amplitude. 

In cases where the number of active nodes or users in a network is smaller than the total 

number of possible users, the vector α  may be assumed sparse, which is the enabling factor for 

CS. 

At the receiver the following signal is observed: 

 

 ( )   y Θ x w ΘΨα Θw  (2) 

 

Where Θ  is a measurement matrix, which we shall treat later, and 
1Nw  is Additive 

White Gaussian Noise (AWGN). Notice here that we take into account noise folding as the noise 

is folded down into the compressed domain together with the signal. This makes the noise has an 

impact on the demodulation performance, because each time the sampling rate is reduced by one 

half, the Signal to Noise Ratio (SNR) is decreased by 3dB . 

 

A. Spread Spectrum Dictionary of Gold Sequences 

In spread spectrum signals, a possible dictionary Ψ  is a set of Gold sequences, as used in e.g. 

GPS technology. A set of Gold sequences is a special dictionary of binary sequences with very 

low auto and cross-correlation properties.  

When using such a CDMA dictionary, the received signal must be sampled at a rate 

corresponding to the chip rate, where a chip is one entry in the received Gold sequences. If α  is 
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sparse the information rate of the signal is much lower and it may be possible to decrease the 

sampling rate by using CS. 

 

III. COMPRESSIVE SENSING 

CS is novel sampling scheme, developed to lower the number of samples required to obtain 

some desired signal. 

Denote by M N



Θ  a CS measurement matrix, where    is the subsampling ratio 

when compared to the Nyquist rate and /M N  . This measurement matrix is then 

responsible for mapping the N -dimensional signal x  to a M -dimensional signal y . 

Normally this would make it impossible to recover the original signal, but under the assumption 

that x  is sparse in some basis, it is possible to reconstruct the original signal from the sampled, 

M -dimensional signal y . 

A. Compressive Spread Spectrum Measurement Matrix 

In most CS literature a choice of measurement matrix or structure must be made. The Random 

Demodulator (RD) sampling structure is one of the most well-known measurement matrix 

structures developed, which is well suited for practical implementation. In the RD a 

Pseudo-Random Noise (PRN) sequence is mixed with the received signal. Because a spread 

spectrum transmitter has already spread the signal before transmission, we show that the RD 

structure can be improved so that the mixing with a PRN sequence at the receiver may be 

skipped.  

The proposed measurement matrix may therefore be defined similarly to the definition of the 

RD matrix in “Beyond Nyquist : Efficient Sampling of Sparse Bandlimited Signals”.   

 

Figure 1 Pseudo-random demodulation scheme 
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In their work, the measurement matrix is based on two matrices, D  and H . First, let 

0 1, , , { 1}N      be the chipping sequence used in the RD for a signal of length N . The 

mapping x Dx  signifies the demodulation mapping with the chipping sequence, where D  

is the diagonal matrix: 

0

1

N







 
 
 
 
 
 

D  

 

  Second, the H  matrix denotes the accumulate-and-dump action performed after mixing. 

Let M  denote the number of samples taken. Then each sample is the sum of /N M  

consecutive entries of the demodulated signal. An example with 3M   and 6N   is : 

 

1 1

1 1

1 1

 
 


 
  

H  

 

The reason for applying a chipping sequence is to spread the signal across the frequency 

spectrum, so that information is aliased down into the lower frequency area, which is left 

untouched by the low-pass filtering. 
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Figure 2  Action of the demodulator on a pure tone. The demodulation process multiplies the 
continuous-time input signal by a random sequence wave. The action of the system on a single tone is 
illustrated in the time domain(left) and the frequency domain (right). The dashed line indicates the 
frequency response of the lowpass filter. 

 

 

Figure 3 Signatures of two different tones. The random demodulator furnishes each frequency with a 
unique signature. This image enlarges the filter’s passband region of the demodulator’s output for two 
input tones (solid and dashed). The two signatures are nearly orthogonal. 
 

 In the proposed receiver this mixing is unnecessary because the signal has already been 

spread at the transmitter. The proposed receiver may therefore be simplified to: 

 y = Hx  (3) 

 

This is significantly simpler to implement in hardware than the RD. The use of a CDMA 

dictionary introduces a random-like dictionary matrix, which spreads the signal out so that each 

sample contains a little bit of the original information signal. Therefore, the sampling process 

may be rewritten as: 

 y = Hx = HΨα =Θα  (4) 

 

Here, the measurement matrix becomes Θ= HΨ  
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B. Subspace Pursuit 

To reconstruct the signal a reconstruction algorithm must be chosen. Many different 

approaches have been developed, but two main classes of reconstruction algorithms are in 

widespread use: 1l  minimization and greedy algorithms. Often, 1l  minimization provides the 

best solution, but if the matrices Ψ  and Θ  are very large, it is much more efficient to use the 

simpler greedy algorithms. Therefore, we choose to use greedy algorithms in this work. 

Recall that Θ  is a measurement matrix with N  columns and /N   rows and define 

A Θ Ψ . Then we define the Subspace Pursuit algorithm as in Algorithm 1. In each algorithm 

iteration, the pseudo-inverse is calculated as the least-squares solution as this is less 

computationally demanding. 

 

Algorithm 1 Subspace Pursuit Algorithm [3]  

Input: 

Sparsity S, measurement and dictionary matrices combined A  and received, sampled signal y  

Initialization: 

0T  {indices of the S largest absolute magnitude entries in the vector 
T

A y } 

0 0

0 T

r T T
 y y A A y  

Repeat 

1l l   

1l lT T  {indices of the S largest absolute magnitude entries in the vector 1T l

r


A y } 

lT {indices of the S largest absolute magnitude entries in the vector †
lT

A y } 

†
l l

l

r T T
 y y A A y  

Until 
1

2 2|| || || ||l l

r r

y y , l S  

 

To demonstrate the performance of the Subspace Pursuit algorithm with the Gold dictionary, 

they have performed numerical experiments to find the phase transition in the noise-less case for 

various choices of measurement matrices.  
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Figure 4 Phase Transition Diagrams for the three different measurement matrices (Rademacher, RD and 
CSS measurement matrix). The black line is the phase transition line for the Tuned Two Stage 
Thresholding(TST) algorithm from “Optimally tuned iterative reconstruction algorithms for compressed 
sensing” 

IV. CONCLUSION 

In this work they apply CS to a general CDMA system and they show that it is possible to use 

a very simple measurement scheme at the receiver side to enable subsampling of the CDMA 

signal. 

 

 

V. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 

 

 

Appendix 

 

 

 

Reference 

[1] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans.Inf. 

Theory, vol. 55, no. 5, pp. 2230–2249, May 2009. 

[2] A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction algorithms for compressed sensing,” 

IEEE J. Sel. Topics Signal Process.,vol. 4, no. 2, pp. 330–341, Apr. 2010. 

[3] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” IEEE Trans. Inf. 

Theory, vol. 55, no. 5, pp. 2230–2249, May 2009. 

 


