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Short Summary:  

This paper derives the upper and lower bounds for channel capacity of the OFDM systems 

over underwater acoustic channels as a function of distance between the transmitter and the 

receiver. The upper bound is obtained using perfect CSI at the receiver while the lower bound is 

obtained by assuming that the input is drawn from a PSK constellation which results in 

non-Gaussian distribution of the output signal and no CSI. It incorporates frequency dependent 

path loss at each arrival path at the receiver due to acoustic propagation. This leads the UW 

channel to be modeled as wide sense stationary and correlated scattering (WSS-non-US) fading 

channel. Results from both Rayleigh and Rician fading show a gap between the upper and lower 

bounds which depends, not only on the ranges and shape of the scattering function of the UW 

channel but also on the distance between the transmitter and the receiver. 

I. INTRODUCTION 

Recently, OFDM has been applied to the UWA communications and yields high data rate with 

strong bit error rate performance [2-5]. 

Time and frequency spreading are the main challenges for data transmission through UW 

channels. Several attempts have been made to characterize the UW channel, most of which view 

the UW channel as a linear time-varying channel with wide sense stationary and uncorrelated 

scattering (WSSUS) [8-10]. However, this approach treats the entire frequency band as a whole 

and neglects the frequency dependent path loss. This model is acceptable for transmissions at 

low bandwidth (<10 kHz) [9]. 

Channel capacity over WSSUS fading channel has been studied [12-15] under these 

assumptions: 1) no CSI is available at the transmitter or receiver, and 2) peak power constraints. 

It is shown that channel capacity is achieved at capacity maximizing bandwidth, which depends 
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on the ranges and shape of the scattering function of the fading channel. These studies are 

conducted over wireless fading channels which assume constant power spectral density (PSD) 

and AWGN noise. There has been some research on the capacity of UW channels [6, 16, 17] but 

all assume no fading in their UW channels. 

This paper investigates the capacity of OFDM systems over the UW fading channels with no 

CSI at the transmitter or the receiver. The UW channel is modeled by taking into account 

frequency-dependent path loss. This invalidates the assumption of stationarity in frequency of 

the WSSUS model and leads to a frequency-dependent doubly spread (DS) fading channel 

characterized by the WSS-non-US [18] assumptions. The conventional WSSUS model is 

uncorrelated in both delay and Doppler domains but the proposed model is uncorrelated in the 

Doppler domain and correlated in the delay domain. 

Using this channel model and assuming that the acoustic propagation and ambient noise PSD 

are available at both the transmitter and receiver, capacity upper and lower bounds are derived. 

Capacity upper bound is derived by assuming perfect CSI at the receiver, while lower bound is 

obtained by the mutual information rate whose input is an i.i.d. random variable and is drawn 

from a PSK modulation [12,19], which results in a non-Gaussian distribution of the output signal. 

Results are obtained for both Rayleigh and Rician fading of the UW channel. Simulation results 

show a gap between the upper and lower bounds which depends not only on the ranges and 

shape of the scattering function of the UW channel, but also on the distance between the 

transmitter and receiver. Results are confirmed with the scattering function obtained from the 

2008 rescheduled Acoustic Communications Experiment (RACE08) experimental data. 

II. OFDM SYSTEM AND UW CHANNEL MODEL 

In this section, an OFDM system model for UW acoustic communications is developed. 

Physical and statistical properties of the channel as well as PSD of the ambient noise are 

investigated and a frequency-dependent UW DS fading channel has been proposed. 
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A. OFDM System 

A conventional CP-OFDM system is considered as shown in Fig. 1. Let 
,0 , 1...

T

n n Kn
X X 
   X

and 
,0 , 1...

T

n n Kn
Y Y 
   Y be the sent and received block of data at the nth OFDM symbol duration, 

respectively. 

 

Fig. 1.  System model 

Assuming the guard interval Lcp is longer than the channel length L to avoid the interblock 

interference (IBI), the input/output relationship can be written as, 

 , , , ,( )n k n k n k n kY G d X N   (1)  

where  0,..., 1k K  is the subcarrier index and  0,..., 1n N  , while d is the distance 

between transmitter and receiver. Gn,k(d) denotes the channel transfer function at the kth 

subcarrier. Nn,k is the ambient noise in the ocean. This simplifies the fading effect into 

multiplicative coefficient, which is the basis for analysis of the UW channel in this paper. The 

impact of ICI is assumed to be negligible through appropriate parameter settings (Justified in 

App. I). For simplicity, the overall system input/output of the entire N OFDM transmissions is 

characterized by a vector of size NK × 1, as follows. 

 diag( ) ( ) diag( ( ))d d   Y X G N G X N  (2) 

where 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
Y Y 

       Y Y Y Y  (3) 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
X X 

       X X X X  (4) 

 0 1 ,0 , 1...  and ...
T TT T

N n n Kn
N N 

       N N N N  (5) 

 0 1 ,0 , 1( ) ( )... ( )  and ( ) ( )... ( )
T TT T

N n n Kn
d d d d G d G d 

       G G G G  (6) 
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B. Characterization of Approximate DS Fading Channels 

UW channel is modeled using both the physical property, which is the attenuation depending 

on the propagation distance and bandwidth of the transmitted signal, and the statistical property 

for which the channel is usually assumed WSSUS. 

1)  Frequency-dependent Path Loss 

For the signal propagated through UW medium, the attenuation or path loss, which is a 

function of distance and signal frequency, is a combination of geometric spreading and 

absorption, written as, 

 
2 2( , ) ( ( ))sp dQ d f d q f   (7) 

where d is the propagated distance in meter and f is the frequency in kilohertz. d
-sp

 represents the 

spreading loss and sp is the spreading factor which is set to 1.5. q
2
(f) is the absorption coefficient 

in seawater which is given by, 

 
2 2

2 4 2

2 7 2 4

1.23 10 1.522
10log( ( )) 2.49 10 0.99 1.48 10  dB/m

f f

f f
q f f 

  
      (8) 

Eq. (8) is calculated when the salinity S is 35 parts per thousand (ppt), gauge pressure Pa is 1 atm, 

temperature T=14 
ο
C, and the relaxation frequency is 111 kHz. 

2) Conventional Statistical Model 

The CIR is modeled by a sum of several multipath components [9], [10]. Let h(t, τ) denote a 

continuous-time CIR of linear time-variant (LTV) UW channels and its corresponding transfer 

function H(t, f) is, 

 

1 1
2

0 0

( , ) ( ) ( ),   ( , ) ( ) i

I I
j f

i i i

i i

h t h t H t f h t e
    

 


 

     (9) 

where I is the number of arrival paths. WSSUS is commonly assumed to characterize the channel, 

i.e.,         , * , ,
chE h t h t R t t            where  ,

chR t t   is the autocorrelation 

function of the delay τ between time t and t’. Its corresponding scattering function is 

   ( , ) , exp 2
cc hS v R t j tv d t       where  0, m  . For a bandwidth of less than 10 kHz, 

let τm and fd denote the maximum channel delay spread and 3-dB Doppler spread of Sc(τ,v), 

respectively. 

3) Frequency-dependent DS Fading Channels 

Conventionally, UW models use WSSUS properties to characterize LTV UW channels, 

assuming equal attenuation across all the signal bandwidth, treating the entire frequency band as 
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flat and neglecting frequency-dependent parameters of the individual arrival path. In reality, 

various factors from channel physics such as the attenuation, reflection loss, or tx/rx operating 

ranges influence frequency dependency on the path loss. In this paper, the impact of channel 

physics is limited to only the attenuation Q
2
(di, f) (7) where di is the propagation distance of ith 

delay path. 

Let ( )
id  denote a CIR of the ith delay path corresponding to Q(di, f) i.e., 

 ( , ) ( )exp 2
ii dQ d f j f d       where 2( , ) ( , ) *( , ).i i iQ d f Q d f Q d f  Taking into account 

( )
id   yields a modified CIR, gd(t, τ) 

  
1

0

( , ) ( ) ( )
i

I

d i d i

i

g t h t     




    (10) 

 

2

1
2

0

1
2

1

0

( , ) ( , )

( ) ( , )

( 0, ) ( )  ( , ) ( , )

( , ) ( , )

i

i

j f

d d

I
j f

i i

i

I
j f

i I

i

G t f g t e d

h t Q d f e

Q d f h t e Q d f Q d f

Q d f H t f







 

















 









 (11) 

 d0 is the distance between transmitter and receiver and the subscript of d is neglected for 

simplicity. Hence the modified CIR is 

 

1

0

( , ) ( ) ( ) ( )
I

d d i i

i

g t h t     




    (12) 

From the sampling theorem, the Ts-spaced discrete time CIR is, 

 

     

 

0,

0

, , sinc

,   is large

[ ] [ , ]

d l d s l

d s l s

d l

g m p g mT B p d

g mT p T B

l h m p



  



 



 



 (13) 

where B=1/Ts. From (13) the channel transfer function can be written as 
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 

 

1 1 1
2 / 2 /

, 0,

0 0 0

1 1 1
2 ( )/ 2 /

0

0 0 0

1 1
2 /

,

0 0

,

1
( ) ,

1
[ ] ,

[0]

( , )

K L K
j p m l Kn j m k K

n k d cp

m l p

K L K
n j m p k K j pl K

d cp

p l m

K L
d j kl K

n l

p l

k n k

G d g m L l e e
K

l h m L l e e
K

G e

Q d f H

 

 





  
 

  

  
  

  

 


 

 
     

 

 
      

 





  

 



 (14) 

where / ( )k c sf f k KT   and fc is the center frequency corresponding to the zeroth subcarrier. 

   0, 0, 0, ,n

d d s lg m l g nN p m p    and  0 0[ , ] ,n

s lh m l h nN p m p    where s cpN L K  is the 

OFDM symbol length and p0 is the arrival time of the first arrival path. Eq. (14) is derived under 

negligible ICI. Moreover, 

 

1 1
2 /

, 0

0 0

1
2 /

,

0

1
,

[0]

L K
n j lk K

n k cp

l m

L
j lk K

n l

l

H h m L l e
K

h e





 


 






 
    

 



 



 (15) 

 

1
2 /

0

( , ) [ ]
L

j lk K

k d

l

Q d f l e 






  (16) 

and  

  
1

2 ( )/

, 0

0

1
[ ] [ ] ,

K
d n j m p k K

n l d cp

m

G p k l h m L l e
K




 



       (17) 

Gn,k(d) is the fading gain encountered by the signal transmitted on the kth subcarrier. Q(d, fk) is 

assumed constant within a subcarrier with center frequency fk. Hn,k[0] is the approximate CIR. Eq. 

(14) simplifies the transfer function of frequency-dependent UW DS channel into a 

multiplication of the attenuation Q(d,fk) and statistical part Hn,k governed by the scattering 

function S[l, λ]. Assuming  [ , ] , /c s bS l S lT T  when the variation of h0[m, pl] within 

Tb(Tb=NsTs) is negligible [32]. Tb is the OFDM symbol interval λ∈[-0.5,0.5]. Its range (L, λd) is 

related to (τ,fd) of Sc(τ,v) through mL B    and λd=fdTb. This leads Gn,k(d) to be a WSS but 

non-US fading channel [18]. 

    *

, ,( ) ( ) ( , ) *( , ) ,n k n k k k HE G d G d Q d f Q d f R n n k k  
     (18) 

where   *

, ,,H n k n kR n n k k E H H        . Compared to the conventional WSSUS model 

(uncorrelated in both delay and Doppler domains), the proposed model is still uncorrelated in 
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Doppler but correlated in the delay domain because of attenuation. To be consistent, a vector 

form for Gn,k(d) from (14) is 

 ( ) ( )n nd dG Q H  (19) 

where   0 1( ) diag ( , )... ( , )Kd Q d f Q d f Q and 
,0 , 1...

T

n n n KH H 
   H from (15). Fig 2 shows a 

realization of 
2

, ( )n kG d when d=5 and 20 km. Hn,k is assumed zero-mean complex Gaussian 

random variable with exponentially decaying PDP with 20-dB power difference between the first 

and last paths. Transmit bandwidth is 51.2 kHz. Channel delay length is 5 ms which corresponds 

to L=256. The number of subcarriers K is 512. We can see that the propagation distance and 

signal frequency have a significant impact on the realization of 
2

, ( )n kG d . 

 

Fig. 2.  Impact of attenuation on CIR 

C.  Ambient Noise 

Nn,k in (1) is assumed the ambient noise in the ocean which consists of four sources [6]: 

turbulence At(f), shipping As(f), waves Aw(f), and thermal noise Ath(f), described by Gaussian 

statistics with a continuous PSD in dBre/μPa per hertz, 

 

( ) 17 30log

( ) 40 20( 0.5) 26log 60log( 0.03)

( ) 50 7.5 20log 40log( 0.4)

( ) 15 20log

t

s

w

th

A f f

A f s f f

A f w f f

A f f

 

     

    

  

 (20) 

where f is the frequency in kilohertz, s ∈ [0,1] is the shipping activity, w is the wind speed in 

meters per second, and overall noise PSD is 

  ( )/10 ( )/10 ( )/10 ( )/10
( ) 10log 10 10 10 10t s w thA f A f A f A f

A f      (21) 
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III. CAPACITY OF THE UW CHANNELS 

The upper bound Uc(d) and lower bound Lc(d) are derived as a function of distance d between 

the transmitter and receiver. The capacity C(d) is given in bits per second by 

 
( )

1
( ) lim sup ( ; )

N pb

C d I
NT


X

Y X  (22) 

where the maximization is over the set p(X) of all input distributions that satisfy a given 

average-power constraint. Uc(d) is obtained when the input vector follows a join complex 

Gaussian distribution. Lc(d) is obtained under imperfect CSI whose reduction from Uc(d) comes 

from limited mutual information from PSK constellation and the MMSE prediction error related 

to channel uncertainty [12], [14]. This bounding technique is used in [12] for wireless fading 

channels while this paper uses it for UW channels. The bounds are derived under the following 

assumptions: 

 Information of attenuation (7) and ambient noise PSD (21) of UW channels are available 

at both the transmitter and receiver. 

 For statistical part [Hn,k (15)] of UW channels, its approximate CIR hn,l[0] is assumed a 

WSSUS random process with variance 2

l where 
22

, 1l n kl
E H   
   . Rayleigh and 

Rician fading are also considered. A scattering function which characterizes Hn,k is 

available at the receiver. 

 The noise vector  , ( )diagN 0 ACN . Where  0 1...
T

NA A A and 

 0 1( ),..., ( )
T

n KA f A f A . 

 The impact of ICI is negligible compared to A(fk). 

Let F denote the subcarrier spacing and B=KF, the signal bandwidth. P is the signal transmit 

power in dBre/μPa. 

A. Upper Bound Uc(d) 

To bound 
( )

sup ( ; )
p

I
X

Y X , we use the chain rule ( ; ) ( ; , ( )) ( ; ( ) | )I I d I d Y X Y X G Y G X . The 

output vector Y depends on the input vector X through b=daig(X)G(d), so I(Y;X,G(d))=I(Y;b). 

The upper bound of I(Y;b) is achieved when the input ( , ( ) ( ))d d X Gb 0 I R RCN . Where 
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( ) [ ( ) ( )]Hd E d d
G

R G G .  
0 1

( ) diag ( ),..., ( )
N

d d d


   X X X
R R R where 

 2 2

0 1( ) diag ( , )... ( , )
n x x Kd d f d f  

   X
R  and 

22

,( , )x k n kd f E X  
  

.  

The upper bound Uc(d) is [27], 

 

  

2

1

( )

21 1
2

,
( ) 0 0

21
2

( , )0

1
( ) lim sup log det ( ) ( ) diag( )

( , )1
lim sup log 1

( )

( , )1
sup log 1 ( , )

( )

( )

x k

N db

N K
k

n k
N d n kb k

K
k

x k
d fkb k

c

C d d d
NT

Q d f
E X

NT A f

Q d f
d f

T A f

U d









 


 





 

       

 
  

 







X

X

X G
R

R

I R R A

 (23) 

where the inequality follows from Hadamard’s inequality [11]. This result is similar to [6] which 

is the capacity of time-invariant UW channels but is scaled by a factor of FTb which is greater 

than 1 to avoid IBI. 2 ( , )x kd f  is subject to the source power constraint 

 

1
2

0

( , )
K

x k

k

F d f P




  (24) 

Uc is obtained when energy allocation across all subcarriers satisfies 

 
  2

( )

2 ( , )
max ,0

( , )

0

k

k

A f

kQ d f
x k

Th f B
d f

otherwise


  

 


 (25) 

where Th is chosen so that (24) is satisfied according to the water-filling algorithm [11]. 

B. Lower Bound Lc(d) over Rayleigh Fading Channels 

For lower bound, channel fading statistics are assumed available at the receiver, not the 

transmitter. Our results show, for the first time, that decrease in Lc(d) depends not only on the 

channel variations but also on the propagation distance d between the transmitter and receiver.  

Consider I(Y;X) where each entry of X, Xn,k is an i.i.d r.v. drawn from PSK modulation whose 

amplitude ,n k xX  and phase ,n kX has a uniform discrete distribution across a circle. I(Y;X) 

can be written as, 

 
   

   

( ; ) ; , ( ) ; ( ) |

; | ( ) ; ( ) |

I I d I d

I d I d

 

 

Y X Y X G Y G X

Y X G Y G X
 (26) 
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The inequality is due to the non-negativity property of mutual information. Exact calculation of 

the mutual information is infeasible due the non-Gaussian distribution of Y [28]. Note that [29] 

 ( ; | ( ))  ( ; | ( ))N N NI d N I dY X G Y X G  (27) 

where ( ) ( ),  ,  and N n N n N nd d  G G X X Y Y since the input Xn,k has an i.i.d. distribution and 

every block of the channel coefficients Gn(d) has the same distribution. 2 ( , )x kd f  is set 

according to (25) under constraint (24) and apply it to ( ; | ( ))N N NI dY X G . This water-filling 

policy is suboptimal for PSK constellation [30]. I(Y;G(d)|X) is calculated in App. II which yields 

   
1

0

( ; ( ) | ) log det ( )diag ( )
N

n

n

I d d d




 Y G X I B S  (28) 

where S(d) is the K×1 vector whose kth entry is 2 2( , ) ( , ) / ( )x k k kd f Q d f A f . Bn(d) is the linear 

MMSE prediction error matrix which depends on both the transmission distance d and channel 

variation RH[m,k]. Substituting (27) and (28) into (26), the mutual information is 

     
1

0

( ; )  ; | ( ) logdet ( )diag ( )
N

N N N n

n

I N I d d d




  X Y Y X G I B S  (29) 

Finally, the lower bound Lc(d) of the capacity C(d) can be written as, 

     

1
( ) lim ( ; )

1 1
; | ( ) log det ( )diag ( )

( )

N
b

b b

c

C d I
NT

I d d d
T T

L d



   



  



Y X

Y X G I B S  (30) 

where ( )dB is calculated given infinite past channel symbols. From (30), unlike [12] and [19], 

channel scattering function is not explicit but lies within ( )dB . 

C. Lower Bound Lc(d) over Rician Fading Channels 

Let ρ denote a Rician fading parameter which is the ratio of the fixed to a scatter part. ρ is 

assumed independent of the transmission distance d and identical for every delay path. The 

approximate CIR hn,l[0] of the lth path is modeled as 

  , ,[0] lj

n l l l n lh Ae s
   (31) 
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2

2

,

22

,

where  

1
and  ,

1 1

l

n l

l n l

A

E s

A E s





 


 
  

  
   

 (32) 

2 2

, [0]n l lE h   
  

. l is assumed uniformly distributed from –π to π and uncorrelated across 

different delay paths. For h(Y) , using (31), Hn,k is 

 

1 1
2 / 2 /

, ,

0 0

l

L L
j j lk K j lk K

n k l l l n l

l l

H Ae e s e
   

 
 

 

    (33) 

From (33), sum of scatter part follows  0,1/ ( 1) CN . This causes  , ,1/ ( 1)n k kH D  CN

where 
1

2 /

0

l

L
j j lk K

l l

l

Dk Ae e
 






 . 

For h(Y|X), we assume that the receiver can successfully track the fixed part lj

lAe


and the 

autocorrelation function of the approximate CIR is 

     * 2 2

, ,[0] [0] ,n l n l l s lE h h A R n n l l l  
         (34) 

Where   *

, ,,s n l n lR n n l E s s 
      . Apply (34) to calculate Bn(d) and obtain h(Y|X). 

 

IV. SIMULATION RESULTS 

The UW fading channel is modeled by two parts, attenuation and statistical as explained 

earlier. The delay profile is assumed exponentially decaying whose maximum delay spread τm is 

set where the first and last arrival paths have 10-dB power difference. The range of the Doppler 

profile scattering function is determined by fd, the 3-dB bandwidth of the frequency response. 

For A(fk), the shipping activity s = 0.5 and wind speed w = 10 m/s. OFDM symbols are 

transmitter at frequency beyond 1 KHz. Energy allocation across transmit bandwidth Bc(d) is 

implemented using (25) subject to power constraint (24). P=145 dBre/μPa and Rayleigh fading is 

assumed unless stated otherwise. 

1) Limitations due to the ICI 

Because of the attenuation, the variance of ICI is frequency dependent. This model assumes 

the ICI variance is negligible compared to that of the ambient noise. In simulation, the ICI 

variance is limited to at least 3 dB lower than ambient noise variance. The ICI variance depends 
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on attenuation, 2 ( )x kf , and shape of the scattering function. Two scattering functions, AR-1 

and uniform scattering are considered whose 3 dB bandwidth is equal to λd. Let S1[l, λ] and S2[l, 

λ] denote these scattering functions of hn,l[0], respectively, given by 

 

 

2

2

1 2
2

2

2

[ , ] ,  0.5,0.5
1

,
[ , ]

0, 0.5

l

d

l

j

l

d

d

S l
e

S l








 



 


 


  



 
 

 

 (35) 

These scattering functions are assumed unchanged over the transmission ranges of interest. 

Fig. 3 displays variance of the ICI at their widest spread of both scattering functions when d=5 

km such that its variance is at least 3 dB lower than that of the ambient noise for most of the 

transmission bandwidth. For the AR-1 model, τm =1 ms and fd =1 Hz. For the uniform model, 

τm=5 ms and fd =7 Hz. We notice that the 3-dB gap is violated when signal bandwidth is greater 

than 31 kHz. These account for only 0.39% of the total signal energy and have negligible impact 

on the capacity as justified in Appendix I. 

 

Fig. 3.  PSD of the received signal, ambient noise, and the ICI variance at d=5 km 

2) Impact of Signal Bandwidth 

From Fig. 4, we can see that both Uc(d) and Lc(d) increase as a function of signal bandwidth B 

and remain fixed when B is greater than a certain value. We define this value as the 

capacity-maximizing bandwidth Bc(d) which is a signal bandwidth that maximizes both Lc(d) and 

Uc(d). The gap beyond Bc(d) is rather wide due to the limited mutual information that can be 

conveyed by the PSK constellation. 
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Fig. 4. Uc(d) and Lc(d) versus bandwidth for AR-1 model at d=5km 

 

3) Impact of Ranges and Shape of the Scattering Function 

Figs. 5 and 6 show the impact of the ranges of (fd,τm) on Lc(d) over the distance for S1[l, λ] and 

S2[l, λ], respectively. 

 

Fig. 5. Impact of (a) Doppler spread and (b) delay spread on Lc(d) for AR-1 scattering function 

As expected, the ratio between Lc(d) and Uc(d) increases as either fd or τm increases. This is 

due to the higher prediction error influenced by stronger channel variations. 
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Fig. 6. Impact of (a) Doppler spread and (b) delay spread on Lc(d) for uniform scattering 

The impact of the shape of the scattering function is compared in Fig. 7 when fd=1 Hz and 

τm=1 ms. We set F=500 kHz and Tb=15 ms. From the figure, Lc(d) from S1[l, λ] is lower than that 

of S2[l, λ] as shown in Fig. 7(a). Fig. 7(b) shows the ratio of Lc(d)/ Uc(d). 

 

Fig. 7. Impact of the shape of scattering function on (a) Lc(d) and (b) Lc(d)/ Uc(d) 
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4) Impact of Over Rician Fading Channels 

The Ricean fading parameter ρ is set to -5, 0, 5, and 10 dB, identical for every path and 

independent of the distance. The Doppler spread profile of the scatter part (34) is assumed 

uniformly distributed. The fixed part is perfectly known at the receiver. From Fig. 8, the gap 

between the upper and lower bounds decreases as ρ increases which is due to the reduced power 

in the scatter part of the channel. 

 

Fig. 8. Uc(d) and Lc(d) to the channel capacity over (a) Rician fading channel, (b) Lc(d)/ Uc(d). Uniform Doppler spread profile 

 

5) Impact of the Transmission Distance 

From Figs. 5 and 6, both Lc(d) and Uc(d) decrease at longer distance owing to strong channel 

attenuation which determines Bc(d). The gap at a short transmission distance is due to the energy 

wasted because of the PSK constellation while the gap at a very long distance is due to the higher 

prediction error because of the stronger attenuation. 

6) Impact of Transmit Power 

Fig. 9 shows the impact of transmit power on Lc(d) and Bc(d) for AR-1 scattering. A 

significant decrease in Lc(d) and Bc(d) occurs especially at long distance. This shows that for data 

transmission at low power, a short distance or multiple short hops across the transducers are 

preferred to one long transmission. 
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Fig. 9. Impact of transmit power on (a) Lc(d) and (b) Bc(d) for AR-1 scattering 

V. EXPERIMENTAL DATA 

The capacity of OFDM systems is investigated using the scattering function from real UW 

environments measured from the RACE08 experiment. Data is selected from the receiving arrays 

which are 1000 m from the transducer. The array is a 12-element vertical array with 12-cm 

spacing between elements. 8-PSK signals are upsampled by a factor of ten and filtered by a 

square root raised-cosine filter with a rolloff factor 0.25. A block of data which contain 64 data 

symbols are transmitted every 28.7 ms. A guard period is inserted between blocks to avoid the 

IBI. The bandwidth is 4.8 kHz at 12-kHz carrier frequency. Fig. 10(a) shows a contour plot of 

the estimates of the scattering function and Fig. 10(b) shows their corresponding PDP of process 

I–IV obtained from four different measurement periods. 

Fig. 11(a) shows Lc(d) and Uc(d) from process I–IV over a range of the distance. Their 

corresponding Lc(d) / Uc(d) are displayed in Fig. 11(b). From the results, process II yields the 

best performance while process IV yields the worst. This is due to high Doppler spread at the 

dominant arrival paths in process IV while process II experiences smallest Doppler spread for 

almost every arrival path as shown in Fig. 10. Processes I and III exhibit similar results although 

process III is slightly worse since more dominant paths experience stronger Doppler spread 

compared to process I. 
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Fig. 10. (a) Scattering function estimates and (b) corresponding normalized PDP 

 

 

Fig. 11. (a) Lc(d) Uc(d) and (b) corresponding Lc(d)/ Uc(d) over experimental UW fading channels 

VI. DISCUSSION 

After meeting, please write discussion in the meeting and update your presentation file. 
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Appendix 

A. ICI Justification 

To investigate the ICI impact, a simulation is run assuming that the ICI behaves as an 

independent complex Gaussian r.v. Therefore, the total noise accumulated in the simulation is 

the ICI plus the ambient noise. From (1), by including the ICI, the received signal can be written 

as 

 
, , , , ,

, , ,

( )

( )

n k n k n k n k n k

n k n k n k

Y G d X C N

G d X Z

  

 
 (36) 

where Zn,k is the complex Gaussian noise consisting of the ambient and ICI noise whose variance 

is 
2

, ( )n k kE C A f  
  

. Using this assumption, Fig. 12 shows the Uc(d) and Lc(d) bounds at 5 km 

distance between transmitter and receiver. This distance gives highest ICI variance since longer 

distance means higher attenuation resulting in lower ICI. 

In conclusion, it is shown that by taking into account the ICI as an additive complex Gaussian 

noise, Uc(d) is reduced by at most 5.89% while Lc(d) is reduced by at most 3.03%. This 

reduction is quite small and has little impact on the overall performance, and justifies our ICI 

setting. 

 

Fig. 12. Impact of ICI on Lc(d) and Uc(d) for AR-1 scattering function 
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B. I(Y;G(d)|X) Derivation 

To calculate I(Y;G(d)|X), use the chain rule of differential entropy [11], 

 

     

   

   
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


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
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 

 



 

Y G X Y X Y G X

Y Y Y X

Y Y Y X

 (37) 

where 

        0 1 0 1| ... , log det Cov | ... ,
K

n n n nh e Y Y Y X Y Y Y X  (38) 

To calculate  0 1Cov | ... ,n nY Y Y X , we begin with mean 

 
   

  
0 1 0 1| ... , diag( ) ( ) | | ... ,

ˆdiag ( ) ( )

n n n n n n

n n

E E d

d d

 



Y Y Y X X G Y Y Y X

X Q H
 (39) 

Where (39) is obtained using (2) and (19).  0 1
ˆ ( ) ( ) | ,..., ,n n nd E d H H Y Y X is the MMSE 

channel estimate given the current and past detected symbols and can be written as the 1-step 

output of the linear K×K MIMO predictor filter of length J 

 

1

ˆ ( ) ( ) ( )
J

n j n j

j

d E d d



H H  (40) 

,0 , 1( ) ( )... ( )
T

n n n Kd H d H d
   H and Ej(d) is the predictor coefficient of size K×K. With (1), the 

observation , 1( )n KH d is obtained by 

 
, ,

, ,

, ,

( )
( , ) ( , )

n k n k

n k n k

n k k n k k

Y N
H d H

X Q d f X Q d f
    (41) 

Then from (39),  0 1Cov | ... ,n nY Y Y X is 

 

 

     

   
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*

Cov | . ,

ˆ ˆdaig( ) ( ) ( ) daig( ) ( ) ( )

daig( ) ( ) ( ) daig( ) ( ) diag( )

n n

H

n n n n n n

n n n n

s

E d d d d

d d d



   
  

 

Y Y Y X

Y X Q H Y X Q H

X Q B X Q A

 (42) 

Where Bn(d) is the linear MMSE prediction error matrix obtained using the orthogonality 

principles. 

Substituting (42) into (38) and into (37), I(Y;G(d)|X) is given as 
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    
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 
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I Y G X I X B X A

I B X A X I XY I YX

I B S

(43) 

The kth entry of the K×1 vector S(d) is 2 2( , ) ( , ) / ( )x k k kd f Q d f A f . 
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