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Short Summary:

This paper derives the upper and lower bounds for channel capacity of the OFDM systems
over underwater acoustic channels as a function of distance between the transmitter and the
receiver. The upper bound is obtained using perfect CSI at the receiver while the lower bound is
obtained by assuming that the input is drawn from a PSK constellation which results in
non-Gaussian distribution of the output signal and no CSI. It incorporates frequency dependent
path loss at each arrival path at the receiver due to acoustic propagation. This leads the UW
channel to be modeled as wide sense stationary and correlated scattering (WSS-non-US) fading
channel. Results from both Rayleigh and Rician fading show a gap between the upper and lower
bounds which depends, not only on the ranges and shape of the scattering function of the UW

channel but also on the distance between the transmitter and the receiver.

I. INTRODUCTION

Recently, OFDM has been applied to the UWA communications and yields high data rate with
strong bit error rate performance [2-5].

Time and frequency spreading are the main challenges for data transmission through UW
channels. Several attempts have been made to characterize the UW channel, most of which view
the UW channel as a linear time-varying channel with wide sense stationary and uncorrelated
scattering (WSSUS) [8-10]. However, this approach treats the entire frequency band as a whole
and neglects the frequency dependent path loss. This model is acceptable for transmissions at
low bandwidth (<10 kHz) [9].

Channel capacity over WSSUS fading channel has been studied [12-15] under these
assumptions: 1) no CSlI is available at the transmitter or receiver, and 2) peak power constraints.

It is shown that channel capacity is achieved at capacity maximizing bandwidth, which depends



on the ranges and shape of the scattering function of the fading channel. These studies are
conducted over wireless fading channels which assume constant power spectral density (PSD)
and AWGN noise. There has been some research on the capacity of UW channels [6, 16, 17] but
all assume no fading in their UW channels.

This paper investigates the capacity of OFDM systems over the UW fading channels with no
CSI at the transmitter or the receiver. The UW channel is modeled by taking into account
frequency-dependent path loss. This invalidates the assumption of stationarity in frequency of
the WSSUS model and leads to a frequency-dependent doubly spread (DS) fading channel
characterized by the WSS-non-US [18] assumptions. The conventional WSSUS model is
uncorrelated in both delay and Doppler domains but the proposed model is uncorrelated in the
Doppler domain and correlated in the delay domain.

Using this channel model and assuming that the acoustic propagation and ambient noise PSD
are available at both the transmitter and receiver, capacity upper and lower bounds are derived.
Capacity upper bound is derived by assuming perfect CSI at the receiver, while lower bound is
obtained by the mutual information rate whose input is an i.i.d. random variable and is drawn
from a PSK modulation [12,19], which results in a non-Gaussian distribution of the output signal.
Results are obtained for both Rayleigh and Rician fading of the UW channel. Simulation results
show a gap between the upper and lower bounds which depends not only on the ranges and
shape of the scattering function of the UW channel, but also on the distance between the
transmitter and receiver. Results are confirmed with the scattering function obtained from the

2008 rescheduled Acoustic Communications Experiment (RACEO08) experimental data.

Il. OFDM SysTeEm AND UW CHANNEL MODEL

In this section, an OFDM system model for UW acoustic communications is developed.
Physical and statistical properties of the channel as well as PSD of the ambient noise are

investigated and a frequency-dependent UW DS fading channel has been proposed.



A. OFDM System

T

A conventional CP-OFDM system is considered as shown in Fig. 1. Let X =[X_ .. X, ]

and Y, = [ano...Ynnyl]T be the sent and received block of data at the nth OFDM symbol duration,

respectively.

Xk : > tim ;
n,k s/P — IFFT s CP [ ] DS fading
N Insert channel
Xvnk S Y, : J
» ymbol |, Xn,k : CP
Detector || PIS = FFT [ |remove r[m]

Fig. 1. System model
Assuming the guard interval L, is longer than the channel length L to avoid the interblock

interference (IBI), the input/output relationship can be written as,

Yo =G, (d)X,, +N @)
where k €[0,...,K—1]is the subcarrier index and ne[0,..,N—1], while d is the distance
between transmitter and receiver. G,k(d) denotes the channel transfer function at the kth
subcarrier. Npx is the ambient noise in the ocean. This simplifies the fading effect into
multiplicative coefficient, which is the basis for analysis of the UW channel in this paper. The
impact of ICI is assumed to be negligible through appropriate parameter settings (Justified in
App. ). For simplicity, the overall system input/output of the entire N OFDM transmissions is

characterized by a vector of size NK x 1, as follows.

Y =diag(X)G(d) + N = diag(G(d))X + N 2)
where
Y=[Y . YL and Y, = [0 Yo ] 3)
X=[X. XL ] and X, =[X,omXoes | (4)
N=[NJ.N},] andN, =[N, q..N,,,] (5)
G(d) =[G1(d)..G,(@) ] and G, (d) =[G,,(d)--G,o() | (©)



B. Characterization of Approximate DS Fading Channels

UW channel is modeled using both the physical property, which is the attenuation depending
on the propagation distance and bandwidth of the transmitted signal, and the statistical property
for which the channel is usually assumed WSSUS.

1) Frequency-dependent Path Loss
For the signal propagated through UW medium, the attenuation or path loss, which is a

function of distance and signal frequency, is a combination of geometric spreading and
absorption, written as,

Q*(d, f)=d™*(q*(f))™ )
where d is the propagated distance in meter and f is the frequency in kilohertz. d** represents the
spreading loss and sp is the spreading factor which is set to 1.5. g*(f) is the absorption coefficient

in seawater which is given by,

1010g(g*(f)) = 2.49x107 f2+0.99 - +1.48x10* —— dB/m ®)

2.41.23x10* 241,522

Eq. (8) is calculated when the salinity S is 35 parts per thousand (ppt), gauge pressure P, is 1 atm,
temperature T=14 °C, and the relaxation frequency is 111 kHz.

2) Conventional Statistical Model
The CIR is modeled by a sum of several multipath components [9], [10]. Let h(t, 7) denote a

continuous-time CIR of linear time-variant (LTV) UW channels and its corresponding transfer
function H(t, ) is,

-1 1-1 )
h(t,z) = Zhi (t)o(r—z), H(t, )= Zhi (O 9)
i=0 i=0
where | is the number of arrival paths. WSSUS is commonly assumed to characterize the channel,
ie, E{h[t,z]n*[t,7]}=R (t-t'7)5(r—7') where R (t—t',7) is the autocorrelation
function of the delay 7 between time t and t". Its corresponding scattering function is

S.(z,v) ZIRm (At,7)exp(—j2zAtv)dAt where 7 €[0, 7, ]. For a bandwidth of less than 10 kHz,

let 7, and fyq denote the maximum channel delay spread and 3-dB Doppler spread of S¢(z,v),
respectively.

3) Frequency-dependent DS Fading Channels
Conventionally, UW models use WSSUS properties to characterize LTV UW channels,

assuming equal attenuation across all the signal bandwidth, treating the entire frequency band as



flat and neglecting frequency-dependent parameters of the individual arrival path. In reality,
various factors from channel physics such as the attenuation, reflection loss, or tx/rx operating
ranges influence frequency dependency on the path loss. In this paper, the impact of channel
physics is limited to only the attenuation Q?(d;, f) (7) where d; is the propagation distance of ith
delay path.

Let ,(z) denote a CIR of the ith delay path corresponding to Q(di, f) i.e,
Q(di,f)zj';(di (t)exp(—j2zfr)dz where Q*(d;, f)=Q(d,, f)Q*(d;, f). Taking into account

X4, () yields a modified CIR, ga(t, 7)

6,67 =3 ()2, () ®5(r 7)) (19

i=0
G, (t, f)=jgd(t,r)e-12””dr

1-1

h (1)Q(d;, f)e ¥
i=0 (12)

Q(do, f)zh(T)e et -.Q(d, f) = Q(d, . f)
=Q(d, f)H(t f)

do is the distance between transmitter and receiver and the subscript of d is neglected for

simplicity. Hence the modified CIR is
1-1
9, (t,7) = 74 (T)®zhi 0o(z—7) (12)
i=0
From the sampling theorem, the Ts-spaced discrete time CIR is,

Goo [M Py ] Igd (mT,,z)sinc(Br—p, )z

~ gy (MT,, py S) "+ B is large (13)
= 2[l1®h[m, p]

where B=1/T. From (13) the channel transfer function can be written as



S K- , o
G, (d)= _Z U0 I:m!+ch,|]ze12ﬂp(m—l)/K @~ i2AmKIK
mo\ K1z Py
:%i(i Kl(;{ [I]®h"|:m'+|_ |:|)XeiZﬂm’(p—k)/Kje—jzzpuK
p=0 1=0 K m'=0 ‘ ’ w (14)
~ S L_lGd [O]e—janI/K
~ n,l
p=01-0
=Q(d, f)H,

where f, = f +k/(KT,) and f; is the center frequency corresponding to the zeroth subcarrier.
oo [M'1]=goq [NN; + Py +m', pJand h"[m’, 1] =hy[nN, + p, +m', p, Jwhere N, =L +K is the

OFDM symbol length and py is the arrival time of the first arrival path. Eq. (14) is derived under
negligible ICI. Moreover,

SIS —j2xlkiK
Hye =D Ezh‘) [m'+ Ll ]

1=0 '=0

L1 (15)
— Zh I[O]e—jZ;rIk/K
£
L1 _
Q(d, f )= z,[1le 1> (16)
=0
and
d 1$& 0 s 22m (p=k)/K
Gulp—Kl=-c > (2@ [m'+ L1 )e )
m'=0

Gnk(d) is the fading gain encountered by the signal transmitted on the kth subcarrier. Q(d, f) is
assumed constant within a subcarrier with center frequency fi. Hnx[0] is the approximate CIR. Eq.
(14) simplifies the transfer function of frequency-dependent UW DS channel into a

multiplication of the attenuation Q(d,fy) and statistical part H,x governed by the scattering

function S[I, A]. Assuming S[l,A] =S, (ITS,}L/Tb)When the variation of ho[m, p;] within
Tu(Tp=NsTs) is negligible [32]. Ty is the OFDM symbol interval 2€[-0.5,0.5]. Its range (L, 4q) is
related to (z,fg) of Sc(z,v) through L =[,,B|and 2¢=fgT. This leads Gy (d) to be a WSS but
non-US fading channel [18].

E{G,,(d)G;,(d)} =Q(d, f)Q*(d, f, )R, [n—n",k—Kk'] (18)
where R, [n—n"k—k']= E[ank H, . ] . Compared to the conventional WSSUS model

(uncorrelated in both delay and Doppler domains), the proposed model is still uncorrelated in



Doppler but correlated in the delay domain because of attenuation. To be consistent, a vector
form for G (d) from (14) is

G, (d)=Q(d)H, (19)
where Q(d) =diag([Q(d, f,)..Q(d, f,,)])and H, = [ano...Hn'H]T from (15). Fig 2 shows a

realization of Gn’k(d)‘zwhen d=5 and 20 km. H,y is assumed zero-mean complex Gaussian

random variable with exponentially decaying PDP with 20-dB power difference between the first
and last paths. Transmit bandwidth is 51.2 kHz. Channel delay length is 5 ms which corresponds

to L=256. The number of subcarriers K is 512. We can see that the propagation distance and

signal frequency have a significant impact on the realization of Gnyk(d)‘ .
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Fig. 2. Impact of attenuation on CIR

C. Ambient Noise

Nk in (1) is assumed the ambient noise in the ocean which consists of four sources [6]:
turbulence A(f), shipping As(f), waves Ay (f), and thermal noise Aw(f), described by Gaussian
statistics with a continuous PSD in dBre/uPa per hertz,

A(f)=17-30log f
A (f)=40+20(s—0.5)+26log f —60log(f +0.03)

A, (f)=50+7.5Jw+20log f —40log(f +0.4)
A,(f)=-15+20log f
where f is the frequency in kilohertz, s € [0,1] is the shipping activity, w is the wind speed in

(20)

meters per second, and overall noise PSD is

A(f) =10l0g (104" +10% (10 £ 10AD10 1M (D10) (21)



I1l. CAPACITY OF THE UW CHANNELS

The upper bound U.(d) and lower bound L(d) are derived as a function of distance d between
the transmitter and receiver. The capacity C(d) is given in bits per second by

C(d)= Limoﬁsupl(Y; X) (22)

p P(X)
where the maximization is over the set p(X) of all input distributions that satisfy a given

average-power constraint. Ug(d) is obtained when the input vector follows a join complex
Gaussian distribution. L¢(d) is obtained under imperfect CSI whose reduction from U.(d) comes
from limited mutual information from PSK constellation and the MMSE prediction error related
to channel uncertainty [12], [14]. This bounding technique is used in [12] for wireless fading
channels while this paper uses it for UW channels. The bounds are derived under the following
assumptions:

e Information of attenuation (7) and ambient noise PSD (21) of UW channels are available

at both the transmitter and receiver.

e For statistical part [Hnx (15)] of UW channels, its approximate CIR hp,[0] is assumed a

WSSUS random process with variance o7 where Y of = EDHH]k

2}:1. Rayleigh and
Rician fading are also considered. A scattering function which characterizes Hpy is
available at the receiver.

o The noise vector N-~cw(0,diag(A)) . Where A=[A...A,,] and

A, =[A(f), .. A D] -

e The impact of ICI is negligible compared to A(fy).
Let F denote the subcarrier spacing and B=KF, the signal bandwidth. P is the signal transmit

power in dBre/pPa.
A. Upper Bound U¢(d)

To bound supl(Y;X), we use the chain rule 1(Y;X)=1(Y;X,G(d))-1(Y;G(d)|X). The
p(X)

output vector Y depends on the input vector X through b=daig(X)G(d), so I(Y;X,G(d))=I(Y;b).
The upper bound of I(Y;b) is achieved when the input b ~cnV(0,1+R, (d) ©R;(d)). Where



R, (d) = E[G(d)G" (d)]. Rx(d):diag([RXO(d),...,RXM(d)J)Where
Ry (d) =diag([o*(d, ,)..02(d, f,)]) and o-f(d,fk)zEDXn’kz]

The upper bound U¢(d) is [27],

C(d) < lim L sup logdet (1+(R,(d) © R, (d))diag(A) )
N —w )

NT, Ry
2} Q?(d, fk)j
A(t)

K-1 2

=iz sup Iog(1+af(d, fk)Mj

Ty (30 020,50 A(fy)

=U,(d)

where the inequality follows from Hadamard’s inequality [11]. This result is similar to [6] which

l N-1K-1
< lim —— sup > > log [1+ EUXmk

N—e NTb Ry (d) n=0 k=0

(23)

is the capacity of time-invariant UW channels but is scaled by a factor of FTy, which is greater

than 1 to avoid IBIl. &Z(d, f,) is subject to the source power constraint

K-1
F> oi(d, f)=P (24)
k=0

U, is obtained when energy allocation across all subcarriers satisfies

Al
max(Th—(222),0) 1, B

o.(d, f)= (25)

0 otherwise
where Th is chosen so that (24) is satisfied according to the water-filling algorithm [11].

B. Lower Bound L.(d) over Rayleigh Fading Channels

For lower bound, channel fading statistics are assumed available at the receiver, not the
transmitter. Our results show, for the first time, that decrease in L¢(d) depends not only on the
channel variations but also on the propagation distance d between the transmitter and receiver.

Consider I(Y;X) where each entry of X, X, is an i.i.d r.v. drawn from PSK modulation whose

amplitude ‘Xn,k =o,and phase X, has a uniform discrete distribution across a circle. 1(Y;X)

can be written as,
1(Y;X)=1 (Y; X,G(d))— I (Y;G(d) | X)

(26)
>1(Y;X]G(d))-1(Y;G(d)| X)



The inequality is due to the non-negativity property of mutual information. Exact calculation of
the mutual information is infeasible due the non-Gaussian distribution of Y [28]. Note that [29]
1(Y; X[G(d)) =N I(Y; X, |G (d)) 27)
where G, (d)=G,(d), X, =X,, and Y =Y, since the input X, has an i.i.d. distribution and
every block of the channel coefficients Gy(d) has the same distribution. &’(d, f,) is set
according to (25) under constraint (24) and apply it to 1(Y,; X, |G, (d)). This water-filling
policy is suboptimal for PSK constellation [30]. I1(Y;G(d)|X) is calculated in App. Il which yields

|(Y;G(d)|X)=NZ_llogdet(| +B,(d)diag(s(d))) (28)

where S(d) is the Kx1 vector whose kth entry is &2(d, f, )Q*(d, f,)/ A(f,). Bn(d) is the linear

MMSE prediction error matrix which depends on both the transmission distance d and channel
variation Ry[m,k]. Substituting (27) and (28) into (26), the mutual information is
N-1
(X Y) 2 N 1(Yy: X |Gy (d))- D logdet(1+B,(d)diag(S(d))) (29)
n=0
Finally, the lower bound L.(d) of the capacity C(d) can be written as,
.1
C(d)=>lim—I(Y; X
(@)2 fim 110

> Ti (Y, X, |Gw(d))—TiIog det(1+B, (d)diag (S(d))) (30)

=L.(d)
where B_(d)is calculated given infinite past channel symbols. From (30), unlike [12] and [19],

channel scattering function is not explicit but lies withinB_ (d).

C. Lower Bound L(d) over Rician Fading Channels

Let p denote a Rician fading parameter which is the ratio of the fixed to a scatter part. p is
assumed independent of the transmission distance d and identical for every delay path. The

approximate CIR hy [0] of the Ith path is modeled as
h,[0]=0;(Ae" +s,,) (31)

10



AZ
EUS”" 2} (32)
and AzszJrl,E[s z}zpiﬂ

hnYI[O]‘Z}:af. ¢ is assumed uniformly distributed from —m to m and uncorrelated across

where p =

n,l

il

different delay paths. For h(Y) , using (31), Hyx is

L-1 L-1
Hn,k _ ZGIAem g~ i2mk/K +Z‘7|5n,|eﬂ2”|k“< (33)
1=0 1=0

From (33), sum of scatter part follows ¢ (0,1/ (o +1)). This causes H,, ~CV(D,,1/(p+1))
L71 . .
where Dk =" o, Aele 1?7
1=0
For h(Y|X), we assume that the receiver can successfully track the fixed part Ae'*and the

autocorrelation function of the approximate CIR is

E[h,,[0lh; . [0]|=( A +R,[n-n"1])o’s[1-1'] (34)
Where R, [n-n',l]= E[sny,s:,y, ] Apply (34) to calculate B,(d) and obtain h(Y|X).

IVV. SIMULATION RESULTS

The UW fading channel is modeled by two parts, attenuation and statistical as explained
earlier. The delay profile is assumed exponentially decaying whose maximum delay spread  is
set where the first and last arrival paths have 10-dB power difference. The range of the Doppler
profile scattering function is determined by f4, the 3-dB bandwidth of the frequency response.
For A(f), the shipping activity s = 0.5 and wind speed w = 10 m/s. OFDM symbols are
transmitter at frequency beyond 1 KHz. Energy allocation across transmit bandwidth Bc(d) is
implemented using (25) subject to power constraint (24). P=145 dBre/pPa and Rayleigh fading is
assumed unless stated otherwise.

1) Limitations due to the ICI
Because of the attenuation, the variance of ICI is frequency dependent. This model assumes

the ICI variance is negligible compared to that of the ambient noise. In simulation, the ICI

variance is limited to at least 3 dB lower than ambient noise variance. The ICI variance depends

11



on attenuation, o’(f,), and shape of the scattering function. Two scattering functions, AR-1

and uniform scattering are considered whose 3 dB bandwidth is equal to A4. Let Si[l, A] and Sy[l,

/] denote these scattering functions of hy[0], respectively, given by

2

_ O _
S, A]1= ‘1_a|e—12’”1 -, 1€[-0.5,0.5]
, (35)
S,[1,A]= 2y ! |ﬂ’|£2’d
0, A,<|4<05

These scattering functions are assumed unchanged over the transmission ranges of interest.
Fig. 3 displays variance of the ICI at their widest spread of both scattering functions when d=5
km such that its variance is at least 3 dB lower than that of the ambient noise for most of the
transmission bandwidth. For the AR-1 model, 7, =1 ms and f4 =1 Hz. For the uniform model,
m=5 ms and fq =7 Hz. We notice that the 3-dB gap is violated when signal bandwidth is greater
than 31 kHz. These account for only 0.39% of the total signal energy and have negligible impact
on the capacity as justified in Appendix |.

80

m%

1 I
Q%(d.f)o(f)
Alf)
_ . AR-1 ICI:fu=1 Hz‘tm=1ms
_ _ _Uniform ICI:fd=7Hz,-rm=5ms H

30 L 1 1 L | E— 1
0

Bandwidth (kHz)
Fig. 3. PSD of the received signal, ambient noise, and the ICI variance at d=5 km

2) Impact of Signal Bandwidth
From Fig. 4, we can see that both U.(d) and L(d) increase as a function of signal bandwidth B

and remain fixed when B is greater than a certain value. We define this value as the
capacity-maximizing bandwidth B.(d) which is a signal bandwidth that maximizes both L.(d) and
Uc(d). The gap beyond B¢(d) is rather wide due to the limited mutual information that can be
conveyed by the PSK constellation.

12



T =1ms
m

Capacity (kbps)

10° 10 10°
Bandwidth (kHz)

Fig. 4. Uc(d) and L(d) versus bandwidth for AR-1 model at d=5km

3) Impact of Ranges and Shape of the Scattering Function
Figs. 5 and 6 show the impact of the ranges of (fyq 7m) on L¢(d) over the distance for S;[l, 1] and

So[l, 4], respectively.

AR-1,7_=1ms AR-1.f,=1Hz
™

10° ——

- L::fﬂ=0.0! Hz
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(a)

80

'rm=ﬂ1m5

. 5 T,=05ms
: o T,=1ms

20
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(b)

80

Fig. 5. Impact of (a) Doppler spread and (b) delay spread on L.(d) for AR-1 scattering function
As expected, the ratio between L.(d) and U(d) increases as either fq or 7, increases. This is

due to the higher prediction error influenced by stronger channel variations.
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Fig. 6. Impact of (a) Doppler spread and (b) delay spread on L(d) for uniform scattering
The impact of the shape of the scattering function is compared in Fig. 7 when f4=1 Hz and

m=1 ms. We set F=500 kHz and T,=15 ms. From the figure, L¢(d) from Sy[l, 4] is lower than that
of Sy[l, 4] as shown in Fig. 7(a). Fig. 7(b) shows the ratio of L¢(d)/ Uc(d).
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Fig. 7. Impact of the shape of scattering function on (a) L.(d) and (b) L.(d)/ U.(d)
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4) Impact of Over Rician Fading Channels
The Ricean fading parameter p is set to -5, 0, 5, and 10 dB, identical for every path and

independent of the distance. The Doppler spread profile of the scatter part (34) is assumed
uniformly distributed. The fixed part is perfectly known at the receiver. From Fig. 8, the gap
between the upper and lower bounds decreases as p increases which is due to the reduced power

in the scatter part of the channel.

1_=5ms, fd=THz 1_=bms, fd=THz
m m

T

—§—Lp=10dB |- 0.85F
o Lc:p=5dB

&L :p=0dB 081
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gu 0.65r-
-

Capacity (kbps)

061

ool e JENC > 0.55

0.5

0.45r

107 L 04 !
0 50 100 0 50 100
Distance (km) Distance (km)

(a) (b)

Fig. 8. U.(d) and L(d) to the channel capacity over (a) Rician fading channel, (b) L.(d)/ U.(d). Uniform Doppler spread profile

5) Impact of the Transmission Distance
From Figs. 5 and 6, both L.(d) and U.(d) decrease at longer distance owing to strong channel

attenuation which determines B¢(d). The gap at a short transmission distance is due to the energy
wasted because of the PSK constellation while the gap at a very long distance is due to the higher
prediction error because of the stronger attenuation.

6) Impact of Transmit Power
Fig. 9 shows the impact of transmit power on L(d) and B(d) for AR-1 scattering. A

significant decrease in L.(d) and B.(d) occurs especially at long distance. This shows that for data
transmission at low power, a short distance or multiple short hops across the transducers are

preferred to one long transmission.
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Fig. 9. Impact of transmit power on (a) L (d) and (b) B.(d) for AR-1 scattering

V. EXPERIMENTAL DATA

The capacity of OFDM systems is investigated using the scattering function from real UW
environments measured from the RACEO8 experiment. Data is selected from the receiving arrays
which are 1000 m from the transducer. The array is a 12-element vertical array with 12-cm
spacing between elements. 8-PSK signals are upsampled by a factor of ten and filtered by a
square root raised-cosine filter with a rolloff factor 0.25. A block of data which contain 64 data
symbols are transmitted every 28.7 ms. A guard period is inserted between blocks to avoid the
IBI. The bandwidth is 4.8 kHz at 12-kHz carrier frequency. Fig. 10(a) shows a contour plot of
the estimates of the scattering function and Fig. 10(b) shows their corresponding PDP of process
I-1V obtained from four different measurement periods.

Fig. 11(a) shows L.(d) and Uc(d) from process |-V over a range of the distance. Their
corresponding L(d) / Uc(d) are displayed in Fig. 11(b). From the results, process Il yields the
best performance while process IV yields the worst. This is due to high Doppler spread at the
dominant arrival paths in process IV while process Il experiences smallest Doppler spread for
almost every arrival path as shown in Fig. 10. Processes | and I11 exhibit similar results although
process Il is slightly worse since more dominant paths experience stronger Doppler spread

compared to process I.
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Fig. 10. (a) Scattering function estimates and (b) corresponding normalized PDP
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V1. DISCUSSION

After meeting, please write discussion in the meeting and update your presentation file.
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Appendix
A. ICI Justification

To investigate the ICI impact, a simulation is run assuming that the ICI behaves as an
independent complex Gaussian r.v. Therefore, the total noise accumulated in the simulation is
the ICI plus the ambient noise. From (1), by including the ICI, the received signal can be written
as

Yok =G ()X, +C  +N
=G, ()X, +Z,,
where Z, is the complex Gaussian noise consisting of the ambient and ICI noise whose variance

is E[

distance between transmitter and receiver. This distance gives highest ICI variance since longer

(36)

Cn,k

2}+A( f.). Using this assumption, Fig. 12 shows the U¢(d) and Lc(d) bounds at 5 km

distance means higher attenuation resulting in lower ICI.

In conclusion, it is shown that by taking into account the ICI as an additive complex Gaussian
noise, U¢(d) is reduced by at most 5.89% while L¢(d) is reduced by at most 3.03%. This
reduction is quite small and has little impact on the overall performance, and justifies our ICI

setting.

100 .
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Fig. 12. Impact of ICI on L(d) and U(d) for AR-1 scattering function
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B. 1(Y;G(d)|X) Derivation

To calculate 1(Y;G(d)|X), use the chain rule of differential entropy [11],
1(Y;G(d) | X)=h(Y[|X)-h(Y|G(d),X)

K-1
h(Yo, Yire Yyt [ X) =N log (7eA(f,)) @37)

k=0

N-1 -1
=> h(Y,[Y,..Y, 1, X)— N> log(7eA(f,))

0

P

=}
I
o
=~
1l

where
(Y, 1 Yo...Y, 1, X) 2log (e)" det(Cov[ Y, | ¥,...Y, 1, X])) (38)
To calculate Cov[Y,|Y,...Y, ,,X], we begin with mean
E[Y,Y,..Y, ;. X]=diag(X,)E[G,(d)| Y, | Y,...Y, 1, X]

= (diag (X, )Q(d))H, (d)
Where (39) is obtained using (2) and (19). H,(d)=E[H,(d)|Y,,...,Y,,,X]is the MMSE

(39)

channel estimate given the current and past detected symbols and can be written as the 1-step

output of the linear KxK MIMO predictor filter of length J
~ J ~
H,(d)=> E;(d)H,_;(d) (40)
j=1
H_(d) :[I:Inyo(d)...ﬁn'K_l(d)]T and E;(d) is the predictor coefficient of size KxK. With (1), the

observation H,  ,(d)is obtained by

Yn Kk I\In k
[ T S — Hn,k +_
X, Q(d, i) X, Q(d, )
Then from (39), Cov[Y, |Y,...Y,,,X]is

H,.(d)= (41)
Cov[Y,|Y,sY,, X]
LE [(Yn —(daig(X,)Q(d))H,(d) ) (Y, —(daig(X,)Q(d)) Fln(d))”} (42)

= (daig(X,)Q(d)) B, (d)(daig(X;)Q(d)) + diag(A,)
Where Bn(d) is the linear MMSE prediction error matrix obtained using the orthogonality
principles.
Substituting (42) into (38) and into (37), I1(Y;G(d)|X) is given as
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1(Y;G(d)| X) = fmg det(l +diag(xn)Bn(d)diag(x;)diag(An)-l)

b4
=

log det(l + Bn(d)diag(X;)diag(An)’ldiag(Xn)) - det(l + XY) =det(l + YX) (43)

o

" log det (1+B,(d) diag (S(d) )

n=

The kth entry of the Kx1 vector S(d) is &2 (d, . )Q°(d, f.)/ A(f,).
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