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Abstract

In this report, we introduce linear regression approaches using shrinkage methods. The shrinkage

method have got attention to solve the problem of linear systems y = Ax because the method enables

us to obtain the solution with lower variance than the conventional least square estimator having the

minimum variance unbiasedness. First we will introduce basic concept of two shrinkage methods in the

linear regression, ridge and lasso. Then, we move our focus to problems of the Lasso variants such as

Fused lasso and Elastic-net. For the discussion in this report, we have partially referred to the chapter

3 of the book [1].

I. INTRODUCTION

A linear regression problem starts from an assumption that the corresponding regression function

Y = f(X) is linear where Y ∈ RM is a measurement vector generated by the function f(·) given a

vector X ∈ RN . This assumption allows us to describe the function f(·) using a linear projection, given

by

Y = AX ∈ RM , (1)

where a measurement matrix A ∈ RM×N specifies the linear relation between Y and X . In such a

regression problem, a typical aim is to estimate the unknown vector X from a set of known inputs or

training data (Y1, a1st-row) ... (YM , aMst-row) where ajth-row = [aj1, aj2, ..., ajN ] denotes the j-th row vector

of the matrix A. In addition, as before, we confine our focus to the linear regression problems which is

underdetermined (M < N) such that there exists infinitely many solutions for X .
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The most standard approach to the linear regression problems is least square estimation (LSE). LSE

obtains its estimate by solving the following optimization problem, given by

(PLSE) : X̂LSE =argmin
X
‖Y −AX‖22

=argmin
X

M∑
j=1

(
Yj −

N∑
i=1

ajiXi

)2

. (2)

It is well known that the LSE solver obtains an estimate X̂LSE by projecting the measurement vector Y

to a subspace of RM spanned by the column vectors of the matrix A. Namely, the minimization task

in (2) chooses X̂LSE which makes the vector difference Y −AX̂LSE to be orthogonal to the subspace.

Such a LSE solution can be represented as a linear function of the measurement vector, i.e.,

X̂LSE = (ATA)−1ATY . (3)

The popularity of LSE is originated from the Gauss-Markov theorem, one of the famous results in

statistics. The Gauss-Markov theorem states that the LSE solver provides the smallest variance among

all linear unbiased estimators. Let X̃ denote an unbiased linear estimate, i.e., E
[
X̃
]
= X . The mean

squared error (MSE) of X̃ is calculated as

MSE
(
X̃
)
:=E

[(
X̂ −X

)2]
= Var

(
X̃
)
+
(
E
[
X̂
]
−X

)2
=Var

(
X̃
)
. (4)

Then, the Gauss-Markov theorem shows that

Var
(
X̂LSE

)
≤ Var

(
X̃
)

(5)

for any other unbiased linear estimate X̃ (We omit the proof here. please refer to [1]).

However, there may exist a biased estimator which can offer smaller MSE then the LSE solver. Such an

estimator would provide a significant reduction in MSE at the expense of losing the unbiasedness [1],[3].

This is one motivation to use the shrinkage method to linear regression problem. The shrinkage methods

is a biased estimation approach to impose a penalty to the optimization setting of (2). If the imposed

penalty can properly catch the characteristic of the target unknown X , the shrinkage methods greatly

improve the estimation accuracy. In this report, we first introduce two types of the most well-known

shrinkage methods, ridge and lasso, by partially referring to [1],[3]. Then, we extend our discussion

to shrinkage methods which estimates the vector X having piecewise smooth or approximately sparse

property.
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II. SHRINKAGE WITH RIDGE PENALTY

In ridge regression, the elements of X are shrunk by imposing a penalty on the energy of X [2].

Therefore, the ridge penalty takes a quadratic form of X , leading to the following optimization setup

(PRidge) : X̂Ridge =argmin
X
‖Y −AX‖22 + λ ‖X‖22

=

M∑
j=1

(
yj −

N∑
i=1

ajiXi

)2

+ λ

N∑
i=1

X2
i , (6)

where λ ≥ 0 denote a parameter to control the amount of ridge shrinkage. Note that by applying the

quadratic penalty ‖X‖22 = XTX , the ridge estimation can be represented as a closed form function of

Y if M ≥ N , given by

X̂Ridge = (ATA+ λIN )
−1ATY . (7)

This imposition of the ridge penalty adds a positive constant to the diagonal ATA in (7) before inversion.

It is noteworthy that this addition makes the regression problem nonsingular even when ATA does not

have full rank. Namely, the ridge solution is necessarily unique regardless of the condition of the matrix

A. This is a strong motivation to use ridge regression.

Ridge regression shrinks the coordinate of X̂Ridge according to the singular value of the matrix A. The

singular value decomposition (SVD) of A has the form

A = UDVT , (8)

where U ∈ RM×N and V ∈ RN×N are orthogonal matrices, and D ∈ RN×N is a diagonal matrix with

singular values d1 ≥ d2 ≥ ... ≥ dN ≥ 0 of A. By applying SVD to the ridge solution, we can efficiently

compute a ridge estimate X̂Ridge associated with the orthonormal basis U and V, as LSE does using the

QR decomposition

X̂Ridge =(ATA+ λIN )
−1ATY

=V(D2 + λIN )
−1DUTY

=

N∑
i=1

vi
di

d2i + λ
uTi Y , (9)

where the ui ∈ RM and vi ∈ RN are the column vectors of U and V respectively. In (9), ridge regression

shrinks the elements of X̂Ridge by the factors di/(d2i +λ). This means that a greater amount of shrinkage

is applied to the elements of X̂Ridge associated with vi having smaller singular values di. Namely, ridge
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Fig. 1. Sparse estimation via ridge estimator with different λ where N = 100,M = 70,K = 5
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Fig. 2. Sparse estimation via ridge estimator with different M where N = 100,K = 5, λ = 0.001

regression shrinks together the correlated elements of X with respect to vi if the direction of vi has small

energy in the column space of A.
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Fig. 3. Shrinkage characteristic of Ridge, Lasso and Best subset selection where the orthonomal matrix A is assumed. In

addition, the blue solid line in the figure is the 45◦ line to show the LSE solution as a reference (The figure is borrowed from

Table 3.4 of [1]).

The ridge penalty can be used to estimate sparse vectors X ∈ RN in undetermined systems Y =

AX ∈ RM . In order to apply the expression of (7), we need an augmented matrix A′ ∈ RN×N which

additionally includes N − M zero rows from A ∈ RM×N . Let us consider sparse vectors X which

contains K nonzero signed elements having unit magnitude. The ridge penalty shrinks the elements of

X with respect to non-principal basis of A′. Hence, the ridge regression enables the K largest elements,

which are most related to the principal basis of A′, to have exceptionally large magnitude.

We examine the ridge regression on the parameter N = 100,K = 5 with standard Gaussian matrix

aji ∈ A ∼ N (0, 1/M). Fig.1 shows that the ridge estimation can finds the K largest elements of X

with appropriately chosen λ. Another example is shown in Fig.2 where we show the behavior of ridge

regression according to the number of M . We note in Fig.2 that the magnitude of the K largest elements

of X̂ becomes smaller as M decreases. This means that for clear distinction of the K largest elements,

the ridge method requires M close to N . In addition, we know from Fig.1 and Fig.2 that the ridge solver

cannot exactly fit the nonzero elements of X .

III. SHRINKAGE WITH LASSO PENALTY

The main characteristic of lasso is that the elements of X are shrunk by imposing a L1-norm penalty

of X [3]. Namely, the penalty in the lasso setup takes an absolute sum of X , ı.e., ‖X‖1 =
N∑
i=1
|Xi|.

Following that, its optimization setup is represented as

(PLasso) : X̂Lasso =argmin
X
‖Y −AX‖22 + λ ‖X‖1

=

M∑
j=1

(
yj −

N∑
i=1

ajiXi

)2

+ λ

N∑
i=1

|Xi|, (10)
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Fig. 4. Sparse estimation via lasso estimator with different λ where N = 100,M = 70,K = 5
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Fig. 5. Sparse estimation via lasso estimator with different M where N = 100,K = 5, λ = 0.001
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where λ is a parameter to control the amount of lasso shrinkage. The larger λ leads to the stronger

shrinkage against the elements of X . When λ = 0 the solution is equivalent to the LSE solution. This L1

penalty generates the solutions of (10) nonlinear with respect to the measurement vector Y ; therefore,

there is no closed form solver as in ridge regression. The lasso solver can be implemented via a quadratic

programming. In addition, the LARs algorithm is well known as a computationally efficient algorithm for

the lasso solution [4].

To see the detail of the lasso behavior, we investigate the Karush-Kuhn-Tucker (KKT) condition with

the Lagrangian L(X,λ) of the setup in (10).

1) Stationarity:∇XL(X,λ) = GX −ATY + λB = 0,

2) Dual feasibility: λ ≥ 0,

3) Prime feasibility: ∇λL(X,λ) = ‖X‖1 ≤ 0,

4) Complementary slackness for strong duality: λ‖X‖1 = 0, (11)

where we define a Gram matrix G := ATA and

B := ∇X‖X‖1 =
[
∂
∑
|Xi|

∂X1
,
∂
∑
|Xi|

∂X2
, ...,

∂
∑
|Xi|

∂XN

]
. (12)

Since
∑
|Xi| is not differentiable, we apply the concept of sub-differential to ∂

∑
|Xi|

∂X1
. Then, each element

of B is given by

Bi =
∂
∑
|Xi|

∂X1
:=

 sign(Xi) if |Xi| ≥ λ

Bi ∈ [−1, 1] if |Xi| < λ
. (13)

We note the stationarity condition in (11), which can be rewritten as

ATY − λB = GX. (14)

Insight about the lasso shrinkage can be obtained by assuming that the matrix A is orthonomal, i.e.,

ATA = I. By applying the orthonomal assumption to (14), we have

X̂Lasso = ATY − λB. (15)

Then, the expression in (15) can be represented by a soft thresholding function with the parameter λ [5],

i.e.,

X̂Lasso = η
(
ATY ;λ

)
, (16)
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where the thresholding function η(τ ;λ) is elementwisely defined as

η (τi;λ) =


τi − λ if τ ≥ λi,

τi + λ if τ ≤ −λi,

0 otherwise.

(17)

We know from (17) that lasso shrinks the elements of X according to their magnitude. For the comparison

purpose, we also consider ridge estimate with the orthonomal matrix A, given by

X̂Ridge =
1

1 + λ
ATY . (18)

Differently from the lasso case, the ridge estimate is obtained with a proportional shrinkage 1
1+λ (radically

the proportional shrinkage of ridge is determined by singular values of A). We borrow Fig.3 from the

reference book (the figure in Table 3.4 of [1]) to depict the shrinkage characteristic of ridge and lasso,

compared to the best subset selection which is an optimal estimator to find the K(≤M) largest elements

of X ∈ RN . Fig.3 explicitly shows the difference among those three estimators.

We examine the lasso solver to estimate the signed K-sparse vectors X ∈ RN from the undetermined

system Y = AX ∈ RM , as in the ridge regression. Fig.4 shows that the lasso solver perfectly finds the

K largest elements with appropriate λ. We note in Fig.4 that the lasso estimate of the case λ = 1 does

not fit to the true of X because in this case, the lasso penalty shrinks the elements too much. Fig.5 shows

the lasso recovery of X for a variety of the number of measurements M . In the figure, we see that the

lasso solver finds an accurate solution when M = 50, 70, but fails in the estimation when M = 20.

IV. VARIANTS OF LASSO

A. Elastic-Net for Approximately Sparse Signal

We can generalize the ridge and the lasso penalty by using the concept of Lp-norm, i.e.,

(PLp
) : X̂Lp

=argmin
X

M∑
j=1

(
yj −

N∑
i=1

ajiXi

)2

+ λ

N∑
i=1

|Xi|p, (19)

for p ≥ 0, where the case p = 0 corresponds to the best subset selection which is non-convex; p = 2

corresponds to ridge regression which is convex; p = 1 is the lasso case which has the smallest p such

that the problem is convex. Value of p ∈ (1, 2) suggests a compromise between the lasso and ridge

regression. If p is closer to 1, the solver has the ability to put small elements close to zero which is the

nature of the lasso solver, If p is closer to 2, the solver more tends to shrink signal elements associated

with the singular values of A which is the nature of ridge regression.
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= 1.2 = 0.2

Fig. 6. Contours of the Lp penalty for p = 1.2 (left plot) and the elastic-net penalty (α = 0.2) (right plot) (The figure is

borrowed from Figure 3.13 of [1].)

Elastic-net, proposed by Zou and Hastie, introduced a different compromise between ridge and lasso

[7]. The elastic-net selects the largest elements like lasso, and shrinks the remaining small elements like

ridge, using a mixture penalty. Therefore, the elastic-net solver is useful for approximately sparse signals

whose small elements are originally not exactly zero. The optimization setting of the elastic-net solver

is given by

(PEN) : X̂EN =argmin
X
‖Y −AX‖22

+ λ
(
α ‖X‖22 + (1− α)‖X‖1

)
, (20)

where α is a mixing rate of the mixture penalty. We borrow Fig.6 from the book (Figure 3.13 of [1]). This

figure compares contours of the Lp norm penalty with p = 1.2 and the mixture penalty with α = 0.2. It

is very difficult to distinguish those two penalties by eyes. Although those two are visually very similar,

there exists a fundamental difference. The elastic-net has sharp (non-differentiable) corners such that it

can put the elements exactly zero, whereas the Lp penalty does not [7]. Likewise with lasso, the elastic-

net can be solved via quadratic programming, and the LARs-EN algorithm was introduced as a LARs

type algorithm to solve the elastic-net problem by Zou and Hastie [7]

We compare the elastic-net solver to the lasso solver in Fig.7 where the problem size is N = 100,M =

70. For the comparison, we test an approximately sparse signal generated from i.i.d two-state Gaussian

mixture density, i.e.,

fX(x) =

N∏
i=1

qN (xi; 0, σ
2
X1

) + (1− q)N (xi; 0, σ
2
X0

), (21)

with q = 0.07, σX1
= 0.05, σX1

= 1. We set the elastic-net parameters α = 0.4, and we use λ = 0.001

for the lasso and elastic-net both. In Fig.7, the elastic-net with appropriately calibrated parameters α, λ
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Fig. 7. Approximately sparse signal estimation (N = 100,M = 70, λ = 0.001) via lasso (Upper plot), and via the elastic-net

(bottom plot) where the MSE of lasso estimate is 0.0509, while that of the elastin-net is 0.0359 in this example.

surely improves the estimation accuracy from lasso although it is very hard to be distinguished by eyes.

Indeed, the MSE of lasso estimate is 0.0509, while that of the elastin-net is 0.0359 in this example.

B. Fused Lasso for Piecewise Smooth Signals

The use of various types of penalties enables us to solve the Y = AX problem adaptively to the

characteristic of the signal X . The fused lasso is one of such solvers to find piecewise smooth signals.

The fused lasso solves the problem given by

(PFL) : X̂FL =argmin
X
‖Y −AX‖22

+ λ

(
α

N∑
i=2

|Xi −Xi−1|+ (1− α)‖X‖1

)
, (22)

where the difference penalty,
N∑
i=2
|Xi −Xi−1|, enforces the estimate X̂FL to be piecewise smooth by

considering the order of the features. Namely, the fuse lasso encourages both sparsity of the signal values

and sparsity of difference between adjacent elements. Fig.8 shows contour plot of the fused lasso penalty

compared to that of the lasso penalty. As shown in Fig.8, the fused lasso penalty has asymmetric contour

owing the difference penalty, and it becomes severe as α increases. This asymmetricity of the fused lasso

encourages the smoothness of the signal.
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Fig. 8. Contours of the Lasso penalty (left plot) and the fuse lasso penalty (α = 0.2) (right plot)

We show an example of the piecewise smooth signal recovery using a fused lasso solver in Fig.9,

where measurements Y is generated from a piecewise smooth signal X with N = 100,M = 50 using a

standard Gaussian matrix A. This example shows that the piecewise smooth signal can be recovered via

the fused lasso as α increases although the signal X itself is not sparse. We also checked that the signal

can be recovered even from M = 25 measurements when α = 0.9. In the figure, the case of α = 0 is

noteworthy because the case is equivalent to the conventional lasso case. This case informs us that such

a piecewise smooth recovery is not successful via the normal lasso solver.

V. CONCLUSIVE REMARKS

We have discussed about shrinkage method to solve the linear system Y = AX . Estimation through

such a method has smaller MSE than LSE at the expense of losing the unbiasedness. Ridge regression

is one of the shrinkage methods applying a penalty on the energy of X . This ridge penalty makes the

solver to shrinks together the correlated elements of X with respect to the matrix A. Estimation accuracy

of ridge is not satisfied for the K sparse signal estimation because the ridge solver cannot exactly fit the

nonzero elements of X . We also have introduced the lasso solver which imposes L1-norm penalty of X .

The lasso solver shrinks the elements of X according to their magnitude, performing the shrinkage as a

soft thresholding function. The estimation accuracy of lasso is very good for K sparse signals by putting

the nonzero elements of X exactly to zero. Elastic-net solver is a compromise of ridge and lasso using

a mixture penalty. This solver is useful for approximately sparse signals whose small elements are not

exactly zero. The fused lasso solver was devised to find piecewise smooth signals. Imposing of difference

penalty, which reflects the order of signal features, enables us to estimate the piecewise smooth signal

effectively.
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Fig. 9. Piecewise smooth signal estimation via fused lasso for a variety of α when N = 100,M = 50, λ = 0.01
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