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[bookmark: _Ref111275535]Short summary: 

· The Shannon–Nyquist–Kotelnikov–Whittaker sampling theorem states precise number of measurements required to reconstruct any band limited signal.

· Undersampling theorems in Compressive sensing (CS) state that we may gather far fewer samples than the usual sampling theorem with exact reconstruction provided the signal obeys sparsity condition. 

· This paper summarizes the combinatorial geometry based approaches which precisely quantify the true sparsity undersampling tradeoff curve of standard algorithms and standard compressed sensing matrices. 

· The approach predicts the exact location in sparsity-undersampling domain where standard algorithms exhibit phase transitions in performance. 

· 

Sample result: A k-sparse signal of length N can be reconstructed from n measurements, provided  for large.

Introduction
This paper starts with 3 reconstruction experiments. For duplication of the results see 
http://sparselab.stanford.edu/
[bookmark: _GoBack] 
Experiment 1. k-sparse signal with general sign pattern. (MRI)

Setting:  (random Fourier measurements)


	                                                          (P1)

Results show that probability of exact reconstruction is 95.5%. For details [4] and [5].
Example 2. k-sparse non-negative signal. (Physical Chemist who perform spectroscopy)

Setting:  (lowest Fourier measurements)
  

                                           (LP)


Theorem:  For every positive signal having at most k non zeroes, (LP) reconstructs exactly from  Fourier measurements. For details see [6]-[8]


Example 3. k simple bounded signal. (Infrared absorption spectroscopy)

Setting:  (lowest Fourier measurements)


                                      (Feas)  

Results show that probability of exact reconstruction is 59%. For details [10].

In the above 3 examples, the signal coefficients are draws from 3 different coefficient ensemble, namely, k-sparse signal with general sign pattern, k-sparse non-negative signal, and k simple bounded signal. 

These three examples illustrate that: Not all N linear measurements to reconstruct a vector with N entries - if those entries obey a sparsity constraint or simplicity constraint. 

We can use fewer measurements for reconstruction, provided:
· Measurements are appropriate linear combinations of signal entries 
· The sparsity/simplicity condition is sufficiently strong;
· Using an appropriate nonlinear reconstruction method.

This paper describes a range of recent works [5], [7], [10]–[13] on undersampling theorems. The theorems conclude: Perfect reconstruction with fewer measurements than the usual sampling theorem is possible, if we exploit sparsity or simplicity.

While involving relatively sophisticated notions in combinatorial geometry the theorems give precise information about the tradeoff of sparsity for undersampling.




Phase Diagrams and Phase transitions 
Phase transition is a systematic framework for understanding the undersampling phenomena. 


System model: 
								 
The 3 examples at the introduction give an idea about how much undersampling is needed for a certain percentage of recovery of sparse signal.

The examples (we saw earlier) are just one instant of the general experiment:
· 



Generate matrix , k-sparse signal  and obtain  
· 
Supply the pair to a convex solver
· 

Record success if the solution from the solver agrees with to relative error  Say the recorded success as S.
· Repeat the above experiment for M trials.
· 


Repeat the experiment for various. The ratio provides the fraction of successful reconstruction at.



It is very convenient to display results graphically with a standard set of undersampling/sparsity coordinates: and 



is a measure of degree of determinacy/indeterminacy of the system.  


, matrix is square and the system is well determined. 


, matrix is short and fat and the system is underdetermined. 


is called undersampling factor.

, indicates marginal sampling

 means high undersampling. 




measures the sparsity and/ or density of the object  

close to 0 means the vector is very sparse 

close to 1 means the vector is almost fully dense  


The domain is termed as undersampling/sparsity phase space.
[image: ]
There are two clear phases 
Phase 1. Fraction of success is 1.
Phase 2. Fraction of success is 0. 

In between these phases is a narrow transition zone where the fraction of success drops from 1 to 0. 

The width of the transition region between two level curves decays as as the problem size increases [10].



The black curve is a function, indicates that it comes from combinatorial geometry.
It coincides with 50% success curve; it thus separates the diagram into two phases and is termed as phase diagram.


In summary, the experimental data exhibit the phenomenon of phase transition; the phase transition occurs at a theoretically derived location. 


The theoretical curve can be called as the phase transition boundary. It gives precise
guidance on the number of samples needed to reconstruct the sparse signal with high probability.

Possible to do the general experiment for various types of sensing matrices (or ensembles) and various types of coefficient ensembles (recall the 3 coefficient ensemble in the introduction) and obtain the empirical phase transition curve.


The theoretical curve for various coefficient ensemble are denoted as follows: 


      k-sparse non-negative signal,   


      k-sparse signal with general sign pattern 


      k simple bounded signal. 
[image: ]
 
Combinatorial Geometry 

The mathematical technique behind finding the undersampling theorems, the phase transition boundary  is combinatorial geometry. 

Donoho and Tanner connects results from combinatorial geometry with solutions of underdetermined systems. In particular, counting the number of faces of a polytope provides an idea about finding an unique solution to the underdetermined system of linear equations. 

Definitions: (Polytope) From Wikipedia

A polytope is a geometric object with flat sides, which exists in any general number of dimensions.
Exs. A polygon is a polytope in two dimensions, [image: http://www.cliffsnotes.com/assets/18140.jpg]
    A polyhedron in three dimensions, and so on in higher dimensions [image: http://www.icoachmath.com/image_md/Regular%20Polyhedron1.jpg]

When referring to an N-dimensional generalization, the term N-polytope is used.

Exs. A polygon is a 2-polytope. 
    A polyhedron is a 3-polytope.

Consider two polytopes P and Q. 
The polytopes have vertices, edges, 2D faces and so on.

	Dimension
of element
	Element name
(in an n-polytope)
	4
	Hypercell
	n − 1
	Facet – (n − 1)-face

	−1
	Null polytope 
	[image: \vdots]
	 [image: \vdots]
	n
	Body – n-face

	0
	Vertex
	j
	j-face – element of rank j = −1, 0, 1, 2, 3, ..., n

	1
	Edge
	[image: \vdots]
	 [image: \vdots]

	2
	Face
	n − 3
	Peak – (n − 3)-face

	3
	Cell
	n − 2
	Ridge or subfacet – (n − 2)-face



Let denote the counting of the k-dimensional face of the polytope P.


Example
[image: ]


Let denote the k-dimensional face of the projected polytope AP, where A is the sensing matrix.


Connection to Underdetermined Systems of Equations

In mathematics, the polytopes are simple and beautiful objects, but are not commonly thought to be useful objects.

However, the k-dimensional face counts reveal solution properties of underdetermined systems of equations. 


Consider the underdetermined system of equations.

A. Linear program (LP) case:

Polytope version of Non-negative signal: Simplex polytope.


	







Lemma 3.1 Suppose the columns of A are in general position in  and that the left-hand side of the system has a sparse solution  where  has k nonzero. Among all systems of this form, the fraction of systems where (LP) has the associated  as its unique solution is



In short, the ratio of face counts between the projected and the unprojected polytope gives the probability that (LP) reconstructs a nonnegative k-sparse solution.

B. P1 case (L1 minimization case)


Polytope version of general signed signal : Cross polytope










Lemma 3.2 Suppose the columns of A are in general position in  and that the left-hand side of the system has a sparse solution  where  has k nonzero. Among all systems of this form, the fraction of systems where (P1) has the associated  as its unique solution is




C. k simple bounded signal case

Polytope version of k simple bounded signal : Hypercube


	







Lemma 3.3 Suppose the columns of A are in general position in  and that the left-hand side of the system has a sparse solution  where  has k nonzero. Among all systems of this form, the fraction of systems where (feas) has the associated  as its unique solution is





Our interest is to know 

How does one actually find the face counts mentioned in the above three lemmas?
Asymptotics of Face Counts With Gaussian Matrices A









Theorem 1 [5], [10], [11], [13]: Let the random matrix A have i.i.d.  Gaussian elements. Consider sequences of triples where and and  There are functions for determining phase transitions in face counts 


	

Theorem 1 is known to be true for matrices other than Gaussian as well; 
Fig. 3 displays the three curves referred to in this theorem. One can see that the simplex has the highest transition, and the hypercube the lowest.
Finite-N Undersampling theorems


The phase transitions discussed in the previous section describe the situation 
But there are also finite-N results.
[image: ]
Most explicit formula for the expected fraction of successes as a function of sparsity and undersampling and problem size are given for unit-bounded signals. For non-negative and general real signals bounds on the expected fraction of successes have been developed [16].

Asymptotics as 


In Fig. 3, vanishes below  Informally, we cannot undersample by more than a factor two in this situation. 

Much more surprising is the fact that the red and green curves in Fig. 3 stay positive whenever  This says that there is no hard limit on undersampling.

Theorem 3 [5]:




Informally, we can reconstruct a k-sparse object from n sampels provide 

	
More precise formulas, effective in finite samples, are available in [16].
Universality across matrix ensembles 
There is an existing theory proving rigorously that some non-Gaussian matrix ensembles offer phase transitions at the same place as Gaussian ones. In other cases, there are empirical evidence that they do. 

For the non-Gaussian ensembles the fact that phase diagram behavior matches the Gaussian case goes far beyond current theory.
[image: ][image: ]




Other undersampling theorems 
Many undersampling theorems exist, which may not be precise, as they do not explain precisely the boundary between success and failure. 

One such example is based on RIP. 

A typical result has the following form: if the RIP constants of A are appropriately bounded, this
algorithm exactly reconstructs.

The RIP constants can in principle be obtained once the matrix A is specified; however,  computing the RIP constants seems to require a massive combinatorial enumeration. 

Currently, no large deterministic matrices are known to have useful RIP constants. Large Gaussian random matrices do typically have useful RIP constants.

Using the best known bounds on RIP constants for Gaussian random matrices, Blanchard et al. [42] were able to reinterpret several well-known recovery results implied by RIP assumptions. The reinterpretations provide lower bounds on the phase transition location for some
Popular algorithms.  



[image: ]

As Fig. 6 shows, the RIP-based results, even with the best known constants, are much weaker than the results we have seen in Fig. 3. 

The phase boundaries using these bounds are substantially below the precise boundary (derived via polytope theory) and even lower than the method of Rudelson and Vershynin


Weak Phase transitions:              


Strong Phase transitions:              
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