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Abstract

In this paper, the authors present a source localization method based on sparse representation of sensor
measurements. In particular, they use SVD of the data matrix obtained from the sensors to summarize
the multiple measurements. The SVD summarized data is then sparsely represented in order to detect
the sources. The authors also proposed grid refinement in order to mitigate the effects of limiting
estimates to a grid of spatial locations. They demonstrate the superior resolution ability with limited
time samples of their method over the existing methods via various experiments.

Introduction and Background

• Source localization methods deal with finding the closely spaced sources in presence of considerable
noise.

• Many advanced techniques for the localization of sources achieve super-resolution by exploiting
the presence of a small number of sources. For example, the key component of the MUSIC method
is the assumption of a low-dimensional signal subspace.

• Estimating the spatial locations (or directions) is a well-known problem in array signal processing.

• Three major source estimation techniques are 1. Classical methods (beamformer, MVDR) 2.
Subspace methods (MUSIC, ESPRIT) 3. ML-based methods (deterministic and stochastic).

• Beamforming is simple but its resolution is limited. Subspace methods achieve super resolution,
provided SNR is moderately high and sources are not strongly correlated and the number of
snapshots (measurement vectors) are sufficient. ML techniques are superior than the subspace
methods but require accurate initialization for global convergence.

• By turning to the sparse signal representation framework, the authors are able to achieve super-
resolution without the need for a good initialization, without a large number of time samples, and
with lower sensitivity to SNR and to correlation of the sources.

• The authors have developed the method for narrowband case and discussed in brief how it can be
used for wideband source localization.

• Prior research has established sparse signal representation as a valuable tool for signal processing,
but its application to source localization has been developed only for very limited scenarios.
For example, [1, 2] is concerned with source localization in the beam-space domain, under the
assumption that the sources are uncorrelated, and that a large number of time samples is available.
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• In its most basic form, the problem of sparse signal representation in overcomplete bases asks
to find the sparsest signal x to satisfy y = Ax, where A ∈ CM×N is an overcomplete basis, i.e.,
M < N .Without the sparsity prior on x, the problem y = Ax is ill-posed and has infinitely many
solutions. Additional information that x should be sufficiently sparse allows one to get rid of the
ill-posedness.

Source localization framework

• The goal of the source localization is to find locations of sources of wavefields that impinge on an
array of sensors that are seperated by a distance less than or equal to λ/2

• Consider K narrowband signals uk(t), k ∈ {1, 2, · · · , K}, arriving at an array of M sensors, after
being corrupted by additive noise nm(t) , resulting in sensor outputs ym(t),m ∈ {1, 2, · · · ,M}.
After demodulation, the vector form of the received signal is

y(t) = A(θ)u(t) + n(t), t ∈ {t1, · · · , tT} (1)

• A(θ) is array manifold matrix. The (m, k)th element A contains the delay and gain information
from the kth source (at location θk) to the mth sensor. The column, a(θk), of A are called steering

vectors and is given by a(θk) =
[
ej

2π
λ
1 sin θk , ej

2π
λ
2 sin θk , · · · , ej 2π

λ
M sin θk

]T
• Any source localization method aims to find the unknown locations of the sources θk,∀k, given
y(t) and A.

• We note that finding θ is a non-linear estimation problem.

Sparse representation for a single time sample, that is, T = 1

• To cast a sparse representation problem, the authors introduce an overcomplete representation of
A in terms of all possible source locations.

• Let {θ̃1, θ̃2, · · · , θ̃N} be a sampling grid of all source locations of interest.

• The number of potential sources N will typically be much greater than the number of actual
sources K and the number of sensors M .
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• A matrix composed of steering vectors corresponding to each potential source location as its

columns constitute an over-complete dictionary, that is, A =
[
a(θ̃1), a(θ̃2), · · · , a(θ̃N)

]
. We note

that A is known and does not depend on the actual source locations.

• The signal vector is s(t) with the nth element sn(t) = uk(t) if the source k comes from θn for some
k and zero otherwise. For T = 1, then the source localization problem reduces to

y = As+ n (2)

• In effect, this overcomplete representation allows us to exchange the problem of parameter esti-
mation of θ for the problem of sparse spectrum estimation of s.

• With the key assumption that the source numbers are less, the underlying spatial spectrum is
sparse (i.e., has only a few nonzero elements), and hence we can solve this inverse problem via l1
methodology, min∥y −As∥22 + λ∥s∥1

• The data for the model is complex-valued; hence, neither linear nor quadratic programming can
be used for numerical optimization. Instead, the authors adopt an SOC programming framework
and find s. Once s is found, the estimates of the source locations correspond to the locations of
the peaks in s.

Source location with multiple time samples and l1 − SV D

• Source localization with multiple snapshots from potentially correlated sources is of greater prac-
tical importance.

• When we bring time into the picture, the overcomplete representation is easily extended and it
has the following form:

y(t) = As(t) + n(t), t ∈ {t1, t2, · · · , tT} (3)

Single and Joint inverse problem

• The first thought that comes to mind when we switch from one time sample to several time samples
is to solve each problem indexed by separately. In that case, we would have a set of solutions ŝ(t).

• If the sources are moving fast, then the evolution of the sources is of interest, and the approach is
suitable for displaying it.

• When the sources are stationary over several time samples, then it is preferable to combine the in-
dependent estimates to get one representative estimate of source locations from them, for example,
by averaging or by clustering.

• Now, we consider a simple approach that uses different time samples together. Let
Y = [y(t1),y(t2), · · · ,y(tT )], and define S and N similarly. Then, we have

Y = AS +N (4)

• We note that the matrix S is parametrized temporally and spatially, but sparsity only has to be
enforced in time not in space.

• To accommodate this issue in the optimization problem, the authors first compute the l2 norm of
all time-samples of a particular space index of s, that is, sl2i = ∥[si(t1), si(t2), · · · , si(tT )]∥2.
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• Then the authors minimize the l1 norm of sl2 =
[
sl21 , s

l2
2 , · · · , sl2N

]
. Now the problem becomes

min∥Y −AS∥2f + λ∥sl2∥1 (5)

• Note in Eqn. (5), the optimization is performed over the matrix S and once the estimate of S is
computed the peaks of S provide the source locations.

• The main drawback of this technique is its computational cost. The size of the inverse problem
increases linearly with T , and the computational effort required to solve it increases superlinearly
with T . In order to alleviate this, the authors propose a SVD based solution.

l1- SVD

• To reduce both the computational complexity and the sensitivity to noise, the authors propose to
use the SVD of the M × Tdata matrix Y .

• The idea is to decompose the data matrix into the signal and noise subspaces.

• With the signal subspace, mold the problem as multiple-vector sparse spectrum estimation problem
similar to Eqn. (4).

• Without noise on the sensors, the set of vectors of Y would lie in a K-dimensional subspace.

• If we can relate the basis of this K-dimensional subspace (set of K vectors) to the source matrix
S, then we can just keep K vectors (instead of T ) for the estimation problem.

• Take the SVD Y = ULV ′ and form a M ×K dimensional matrix Ysv as Ysv = Y V Dk, where
Dk is an T ×K matrix given as Dk = [IK0

′]

• Now Ysv can be written as

Ysv = Y V Dk

= (AS +N )V Dk

= ASV Dk +NV Dk

= ASsv +Nsv

(6)

• We note that the sparsity structure of S is retained in Ssv.

• Considering the k-th column of Eqn. (6) we have

ysv(k) = Assv(k) + nsv(k), k = 1, 2, · · · , K (7)

This is exactly the same form as multiple-vector model in Eqn. (3), expect that indexing is by
singular vector, k.

• By bringing SVD, the problem size is reduced from T to K. This reduction is substantial, because
in typical situations K ≪ T .

• Now in the matrix Ssv, the sparsity is along the spatial domain and not in the singular vector
domain.

• To accommodate the true sparsity in the minimization problem, the authors define
s̃l2i = ∥[ssvi (1), ssvi (2), · · · , ssvi (K)∥2. The sparsity of the N × 1 vector s̃l2i is the sparsity of the
spatial spectrum, which can be found by minimizing

∥Ysv −ASsv∥2f + λ∥s̃l2∥1 (8)
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• In this paper, the authors have solved the above problem using SOC programming (see paper for
details)

Multi-resolution grid refinement

• Thus far, in this paper, the estimates of the source locations are confined to a grid.

• We cannot make the grid very fine uniformly since this would increase the computational com-
plexity and also the columns of A becomes more linearly dependent.

• Hence, the authors explore the idea of adaptively refining the grid in order to achieve better
precision

• Instead of having a universally fine grid, we make the grid fine only around the regions where
sources are present.

• This requires an approximate knowledge of the locations of the sources, which can be obtained by
using a coarse grid first.

• The grid refinement algorithm goes like this

1. Create a rough grid of potential source locations θ̃(0), for i = 1, 2, · · · , N . Set r = 0.

2. Form Ar = A(θ̃(r)), where θ̃(r) =
[
θ̃
(r)
1 , θ̃

(r)
2 , · · · , θ̃(r)N

]
. Use the SOC minimization to find the

estimates of the source locations and set r = r + 1.

3. Get a refined grid θ̃(r) around the locations of the peak, θ̂
(r−1)
j (explained below).

4. Return to step 2, until the grid is fine enough.

• There are many ways of refining the grid; the authors have chosen a simple equispaced grid
refinement.

• Suppose at step r, we have a uniform grid with spacing δr. Also, we have an estimate θ̂
(r)
j
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• Pick an interval around the jth detected source with two grid spacing on either side, that is,
[θ̂

(r)
j − 2δr, θ̂

(r)
j + 2δr], for j = 1, 2, · · · , K.

• In the intervals around the peak, select a new grid whose spacing is a fraction of the old one
δr+1 = δr/γ

Simulation results

• The authors consider M = 8 sensors separated by half a wavelength. K = 2 (62◦, 65◦), T =
200, N = 180.
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• For correlated sources, the result is as follows

summary

In this paper, the authors have proposed a source location estimation based on sparse representation.
The SVD of the sensor measurements summarizes the large chunk of data which is then used as a model
for identifying the sources. This method is applicable for both narrow and wideband beamforming. The
authors have also presented a grid refinement method in order to obtain fine estimates. The advantages
of the proposed method include superior resolution ability with limited time samples for both correlated
and uncorrelated sources.
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