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Short summary:  

Sparse Principal Conponent Analysis (PCA) is a dimensionality reduction technique wherein one 

seeks a low rank representation of a data matrix with additional sparity. 

The authors consider two probabilistic models of sparse PCA: a spiked Wigner and spiked 

Wishart (or spiked covariance) model. They analyze an Approximate Message passing (AMP) 

algorithm to seek the underlying data and show that AMP estimates are information-theoretically 

optimal for the models. 

I. INTRODUCTION 

A. Two sparse PCA models:  

Suppose we are given data n nYλ
×∈  distributed according to the following models 

 

1) spiked Wigner model 

 Y xx Z
nλ
λ

= +T  (1) 

Here nx∈ , and each coordinate is denoted by ( )~ Berix ε . n nZ ×∈  is a symmetric 

matrix where ( )ij i jZ ≤  are i.i.d ( )N 0,1  variables, independent of x . 

2) spiked Wishart model 

 Y uv Z
nλ
λ

= +T  (2) 

Here mu∈ , with i.i.d coordinates ( )~ N 0,1iu  and nv∈  with i.i.d coordinates 

( )~ Berjv ε . Further, m nZ ×∈  is a matrix with ( )~ N 0,1ijZ  i.i.d. random variables. 
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In either case, the given data consists of a sparse, rank-one matrix observed through Gaussian 

noise. The authors let X  denote the clean, underlying signal ( xxT  or uvT ). The goal is to 

estimate the signal X  from the data Yλ  in the high dimension asymptotic where n →∞ , 

m →∞  with ( )/ 0,m n α→ ∈ ∞ .  

B. Information-theoretical approach and AMP: 

This paper focuses on estimation in the sense of the mean squared error, defined for an 

estimator error  ( )X Yλ  as: 

 ( ) { }2

2

1mse ,
F

X X X
n

λ = Ε −  (3) 

The mean squared error is minimized by the estimator  { }|X X Yλ= Ε , i.e. the conditional 

expectation of the signal given the observations [1]. The estimator, which is often intractable to 

compute, can be obtained using a polynomial-time scheme by using AMP algorithm. 

Consequently, the minimum mean squared error(MMSE) is given by: 

 ( ) { }{ }2

2

1M-mmse , |
F

n X X Y
n λλ ≡ Ε −Ε  (4) 

The machinery of AMP reduces the high-dimensional matrix problem in model (1), (2) to the 

following simpler scalar denoising problem: 

 0Y X Nλ λ= +  (5) 

where ( )0 ~ BerX ε  and ( )~ N 0,1N  are independent. The scalar MMSE [2] in estimating 

0X  from Yλ  is given by: 

 ( ) { }( ){ }2
0 0 0S-mmse , |X X X Yλλ = Ε −Ε  (6) 

C. Main results: 

The main results of this paper characterize the optimal mean squared error (4) by using scalar 

MMSE (6) in the large n  asymptotic, when 0.05cε ε> ≈ , and establish that AMP achieves 

this fundamental limit. 
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II. BACKGROUND 

 PCA, which involves using the principal eigenvector is ineffective in estimating the 

underlying clean signal X  when cλ λ< . (Phase transient phenomenon) 

 Since the sparsity assumptions are added to the model, this can be leveraged when λ  

is small. 

 Estimating the support correctly for some conditions is impossible due to 

information-theoretic obstructions. [17] So they focus on another natural 

figure-of-merit: the mean squared error. 

 

III. ALGORITHM 

AMP is a low complexity iterative algorithm that produces iterates ,
tt nx x ∈  for a data 

matrix A .  

 

Symmetric Bayes-optimal AMP algorithm 

Input: DataYλ  

Define /A Y nλ=  and  

0 1
, 0x x

−
= . For 0t ≥  compute 

 

11 t tt
tx Ax b x

−+ = −  



1 1( )
t t

tx f x
+ +=  

  

1 1 1
( )

t t t
X x x

+ + + Τ=  

 

Here :tf →   are scalar functions and { } 0t t
b

≥
 is a sequence of scalars. For a scalar 

function tf , the authors define its extension to n
  by applying it component-wise, i.e. 

( ) ( ) ( )( )1 2: , ( ) , ,n n
t t t t t nf v f v f v f v f v→ =

T
     

The key property of approximate message passing is that it admits an asymptotically exact 

characterization in the high dimensional limit where n →∞ . The iterates t
ix  converge as 

n →∞  to Gaussian random variables with prescribed mean and variance. These prescribed 
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mean and variance parameters evolve according to deterministic recursion, jointly termed “state 

evolution”. It is defined for 0t ≥  as: 

 ( ){ }1 0 0t t t tX f X Zµ λ µ τ+ = Ε +  (7) 

 ( ){ }2

1 0t t t tf X Zτ µ τ+ = Ε +  (8) 

Where ( )0 ~ BerX ε  and ( )~ N 0,1Z  are independent. The recursion is initialized with 

0 0 0µ τ= = . 

The scalar tb  are computed as: 

( )
1

1 n
t

t t i
i

b f x
n =

′= ∑  

The authors choose ( ) { }0 0|t t tf y X X Z yµ τ= Ε + = , the posterior expectation of 0X , with 

observation corrupted by Gaussian noise and SNR 2 /t tµ τ . 

 

IV. MAIN RESULT 

I introduce the result for spiked Wigner case because the paper doesn’t provide proof for 

spiked Wishart case. The authors say the proof for spiked Wishart case follows similar ideas and 

will be provided in the full version of the present paper. 

Definition II.1  Let ( )0,1ε∗ ∈  be the smallest positive real number such that for every 

*ε ε>  the following is true. For every 0λ > , the equation below has only one solution in 

[0, )∞ : 

 ( )1
0S-mmse ,y X yλ ε− = −  (9) 

Here ( )0 ~ BerX ε  

Theorem 2.  Under Model (1) we have ( )M-mmse lim M-mmse( ,n)nλ λ→∞=  exists for 

every 0λ ≥ . This limit satisfies, when *ε ε≥ : 

 ( ) ( )2
*2

2M-mmse
y λ

λ ε
λ

= −  (10) 
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where ( )*y λ  is the unique solution to Eq. (9) above. Further, the symmetric Bayes-optimal 

AMP algorithm satisfies the following almost surely: 

 ( ) ( )AMPlim lim MSE , M-mmse
n t

tλ λ
→∞ →∞

=  (11) 

To sum up, Theorem 2 says the estimation of AMP achieves minimum mean squared error 

under limiting regimes and the machinery of AMP reduces the high-dimensional matrix problem 

to the simpler scalar problem. 

 
Figure 1. The solid curves ( )M-mmse λ  above are computed analytically using Theorem 2. The crosses mark 

median MSE incurred by AMP in 100 Monte Carlo runs with 2000n =  for the spiked Winger model (1). 
 

V. SKETCH OF PROOF 

The paper provides proofs of two propositions. The first proposition is that mean squared error 

of MSE estimation, ( )AMPlim lim MSE ,
t n

tλ
→∞ →∞

 can be characterized as the terms of scalar MMSE, 

0S-mmse( , )X λ . The second proposition says ( )AMP0 0
M-mmse( ) lim lim MSE ,

t n
d t dλ λ λ λ

∞ ∞

→∞ →∞
≥∫ ∫ .  

Since the posterior expectation minimizes the mean squared error, we have that 

( ) ( )AMPM-mmse lim lim MSE ,
t n

tλ λ
→∞ →∞

≤ . These imply that ( )AMPlim lim MSE , M-mmse( )
t n

tλ λ
→∞ →∞

=  

The sketch of proof for the first proposition is as follows. 

Note that: 
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( ) 

 ( )
 

2

AMP 2

2

2

4 2
4

2

1MSE ,

1

1 2 ,

t

F

t t

F

t t

t X X
n

x x xx
n

x x x x
n

λ = −

= −

 
= + − 

 

T
T  

By the strong law of large numbers, ( ) { }( )2 22 2 2/ Ex n x ε→ =  almost surely.  

The functions ( )tf y  are -Lipschitzλ  continuous. Hence, it is a direct consequence of 

Theorem 1 of [21] that the following limits hold almost surely: 

 ( ) ( ){ }
2 2 22 2 2

0
1lim

t t

t t tn
x x f X Z

n
µ τ

→∞

   
= Ε = Ε +  

  
 

 { } ( ){ }
2 2 2

0 0
1lim ,

t t

t t tn
x x x x X f X Z

n
µ τ

→∞

  = Ε ⋅ = Ε + 
 

 

The authors’ choice ( ) { }0 0|t t tf y X X Z yµ τ= Ε + =  yields: 

( ){ } { }{ }
{ } ( )

{ } ( ) ( )

{ } ( )

0 0

0 0 0

0

0 0 0 0 0

1

0 0 0 0,
0

1

0 0 0 0 0,
0

2

0 0 0

0

|

| ,

| |

|

|

t t

t t t t

t t

t t t t t

t t t tX Xy
k

t t t t t tX X Xy
k

t t t tXy

t

X f X Z X X X Z

k X X Z y f X k X Z y dy

X X Z y k f X k X Z y f X Z y dy

X X Z f X Z y dy

X

µ τ

µ τ µ τ

µ τ

µ τ µ τ

µ τ µ τ

µ τ µ τ µ τ

µ τ µ τ

µ

+
=

+ +
=

+

Ε + = Ε Ε +

= Ε + = = + =

 = Ε + = ⋅ = + = + = 
 

= Ε + + =

= Ε Ε

∑∫

∑∫

∫

{ }{ }2 1

0 1 1t t tX Zτ τ λ µ
−

+ ++ = =

Thus, 

( ) 2 2
AMP 1a.s.

lim MSE , tn
tλ ε τ +→∞
→ −  

Let *( )τ λ  denote the smallest non-negative fixed solution of the equation(convergence point): 

 { }{ }2

* 0 * 0 *|X X Zτ λτ τ= Ε Ε +  (12) 

Since the right had side of the equation (12) equals to (1 )ε ε−  at 0τ∗ =  and ε  at τ∗ = ∞ , at 

least one fixed point must exist. Hence *( )τ λ  is well defined. It follows that  



 
 

7 

( ) 2 2
AMP *a.s.

lim lim MSE ,
t n

tλ ε τ
→∞ →∞

→ −  

Now, note that: 

{ }{ }
{ }{ }

{ } { }( ){ }
( )

2

* 0 * 0 *

2

0 * 0

2
2
0 0 0 * 0

0 *

|

|

|

S-mmse ,

X X Z

X X Z

X X X X Z

X

τ λτ τ

λτ

λτ

ε λτ

= Ε Ε +

= Ε Ε +

= Ε −Ε −Ε +

= −

 

 

VI. CONCLUSION 

This paper introduces two sparse PCA models and AMP algorithm to obtain the optimal 

estimator in the sense of the mean squared error for underlying signals from the given data. AMP 

reduces the high-dimensional matrix problem to simpler scalar problem. They characterize mean 

squared error of AMP in terms of scalar mean squared error. And, the paper provides proof about 

the relationship between mean squared error of AMP and Matrix minimum mean squared error 

for one model, spiked Wigner model. 
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