
1 © 2012 The MathWorks, Inc.

Speeding up MATLAB Applications

2

 Leveraging the power of vector & matrix operations

 Addressing bottlenecks

 Utilizing additional processing power

 Summary

Agenda

3

Example: Block Processing Images

 Evaluate function at grid points

 Reevaluate function

over larger blocks

 Compare the results

 Evaluate code performance

4

Summary of Example

 Used built-in timing functions

>> tic

>> toc

 Used Code Analyzer to find

suboptimal code

 Preallocated arrays

 Vectorized code

5

Effect of Not Preallocating Memory

>> x = 4

>> x(2) = 7

>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

 X(3) = 12 X(2) = 7

6

Benefit of Preallocation

>> x = zeros(3,1)

>> x(1) = 4

>> x(2) = 7

>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

7

Data Storage of MATLAB Arrays

>> x = magic(3)

x =

 8 1 6

 3 5 7

 4 9 2

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0040

0x0048

0x0050

0x0058

0x0060

0x0068

See the June 2007 article in “The MathWorks News and Notes”:

http://www.mathworks.com/company/newsletters/news_notes/june07/patterns.html

8

3

4

1

5

9

6

7

2

http://www.mathworks.com/company/newsletters/news_notes/june07/patterns.html

8

Speed and Memory Usage

 Balance vectorization and memory usage

– Use bsxfun instead of functions such as repmat

– Reduce size of arrays to smaller blocks for block processing

 Consider using sparse matrices

– Less Memory: Store only nonzero elements and their indices

– Faster: Eliminate operations on zero elements

– Blog Post - Creating Sparse Finite Element Matrices
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-

element-matrices-in-matlab/

http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/
http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/

9

Indexing into MATLAB Arrays

 Subscripted

– Access elements by rows and columns

 Linear

– Access elements with a single number

 Logical

– Access elements with logical operations or mask

1 4 7

2 5 8

3 6 9

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Linear indexing

Subscripted indexing

ind2sub sub2ind

10

MATLAB Underlying Technologies

 Commercial libraries

– BLAS: Basic Linear Algebra

 Subroutines (multithreaded)

– LAPACK: Linear Algebra Package

– etc.

 JIT/Accelerator

– Improves looping

– Generates on-the-fly multithreaded code

– Continually improving

11

Other Best Practices

 Minimize dynamically changing path
>> addpath(…)

>> fullfile(…)

 Use the functional load syntax
>> x = load('myvars.mat')

x =

 a: 5

 b: 'hello'

 Minimize changing variable class
>> x = 1;

>> xnew = 'hello';

instead of cd(…)

instead of load('myvars.mat')

instead of x = 'hello';

12

Summary

 Techniques for addressing performance

– Vectorization

– Preallocation

 Consider readability and maintainability

– Looping vs. matrix operations

– Subscripted vs. linear vs. logical

– etc.

13

 Leveraging the power of vector & matrix operations

 Addressing bottlenecks

 Utilizing additional processing power

 Summary

Agenda

14

Example: Fitting Data

 Load data from multiple files

 Extract a specific test

 Fit a spline to the data

 Write results to Microsoft Excel

15

Summary of Example

 Used profiler to analyze code

 Targeted significant bottlenecks

 Reduced file I/O

 Reused figure

16

Interpreting Profiler Results

 Focus on top bottleneck

– Total number of function calls

– Time per function call

 Functions

– All function calls have overhead

– MATLAB functions often take vectors or matrices as inputs

– Find the right function – performance may vary

 Search MATLAB functions (e.g., textscan vs. textread)

 Write a custom function (specific/dedicated functions may be faster)

 Many shipping functions have viewable source code

17

Classes of Bottlenecks

 File I/O

– Disk is slow compared to RAM

– When possible, use load and save commands

 Displaying output

– Creating new figures is expensive

– Writing to command window is slow

 Computationally intensive

– Use what you’ve learned today

– Trade-off modularization, readability and performance

– Integrate other languages or additional hardware

 e.g. MEX, GGPUs, FPGAs, clusters, etc.

18

Acceleration using MEX (MATLAB Executable)

 Call C or Fortran code directly

from MATLAB

– Integrate existing code using MEX API

– Auto-generate C-based MEX files from

MATLAB code using MATLAB Coder

 Speed-up factor will vary

– May see speedup for state-based for-loops

– May not see a speedup when MATLAB code is

 Using multithreaded computations

 Using optimized libraries (BLAS, FFTW, etc.)

c = myFcn(a,b)

myFcn.c

void mexFunction(

 int nlhs, mxArray *plhs[],

 int nrhs, const mxArray *prhs[])

{

 /* more C code ... */

}

19

Steps for Improving Performance

 First focus on getting your code working

 Then speed up the code within core MATLAB

 Consider additional processing power

20

 Leveraging the power of vector & matrix operations

 Addressing bottlenecks

 Utilizing additional processing power

 Summary

Agenda

21

Going Beyond Serial MATLAB Applications

Worker Worker

Worker

Worker

Worker
Worker

Worker

Worker TOOLBOXES

BLOCKSETS

22

Example: Optimizing Tower Placement

 Determine location of cell towers

 Maximize coverage

 Minimize overlap

23

Summary of Example

 Enabled built-in support for

Parallel Computing Toolbox

in Optimization Toolbox

 Used a pool of MATLAB workers

 Optimized in parallel using fmincon

24

Parallel Computing Support in Optimization

Toolbox

 Functions:

– fmincon

 Finds a constrained minimum of a function of several variables

– fminimax

 Finds a minimax solution of a function of several variables

– fgoalattain

 Solves the multiobjective goal attainment optimization problem

 Functions can take finite differences in parallel

in order to speed the estimation of gradients

25

Tools Providing Parallel Computing Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Communications System Toolbox

 Simulink Design Optimization

 Bioinformatics Toolbox

 Image Processing Toolbox

 …

Worker

Worker

Worker

Worker Worker

Worker

Worker TOOLBOXES

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

26

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

Task Parallel Applications

Time Time

TOOLBOXES

BLOCKSETS

Worker

Worker

Worker

Worker

27

Example: Parameter Sweep of ODEs

 Solve a 2nd order ODE

 Simulate with different

values for b and k

 Record peak value for each run

 Plot results



  0
,...2,1,...2,1

5

 xkxbxm 

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

28

Summary of Example

 Mixed task-parallel and serial

code in the same function

 Ran loops on a pool of

MATLAB resources

 Used M-Lint analysis to help
in converting existing for-loop

into parfor-loop

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

29

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(10, 1)

parfor i = 1:10

 a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

Worker Worker

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

30

Converting for to parfor

 Requirements for parfor loops

– Task independent

– Order independent

 Constraints on the loop body

– Cannot “introduce” variables (e.g. load, etc.)

– Cannot contain break or return statements

– Cannot contain another parfor loop

31

Advice for Converting for to parfor

 Use Code Analyzer to diagnose parfor issues

 If your for loop cannot be converted to a parfor,

consider wrapping a subset of the body to a function

 Read the section in the documentation on

classification of variables

32

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

33

What is a Graphics Processing Unit (GPU)

 Originally for graphics acceleration, now

also used for scientific calculations

 Massively parallel array of integer and

floating point processors

– Typically hundreds of processors per card

– GPU cores complement CPU cores

 Dedicated high-speed memory

* Parallel Computing Toolbox requires NVIDIA GPUs with Compute Capability 1.3 or

greater, including NVIDIA Tesla 10-series and 20-series products. See

http://www.nvidia.com/object/cuda_gpus.html for a complete listing

http://www.nvidia.com/object/cuda_gpus.html

34

Example: Solving 2D Wave Equation

 Solve 2nd order wave

equation using spectral

methods:

𝜕2𝑢

𝜕𝑡2
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

 Run for 50 time steps on

both CPU and GPU

 Using gpuArray and

overloaded functions

35

Benchmark: Solving 2D Wave Equation
CPU vs GPU

Intel Xeon Processor X5650, NVIDIA Tesla C2050 GPU

Grid Size
CPU

(s)

GPU

(s)
Speedup

64 x 64 0.1004 0.3553 0.28

128 x 128 0.1931 0.3368 0.57

256 x 256 0.5888 0.4217 1.4

512 x 512 2.8163 0.8243 3.4

1024 x 1024 13.4797 2.4979 5.4

2048 x 2048 74.9904 9.9567 7.5

36

Summary of Options for Targeting GPUs

 Use GPU array interface with

MATLAB built-in functions

 Execute custom functions on

elements of the GPU array

 Create kernels from existing CUDA

code and PTX files

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

37

Interactive to Scheduling

 Interactive

– Great for prototyping

– Immediate access to MATLAB workers

 Scheduling

– Offloads work to other MATLAB workers (local or on a cluster)

– Access to more computing resources for improved performance

– Frees up local MATLAB session

38

Scheduling Work

TOOLBOXES

BLOCKSETS

Scheduler

Work

Result

Worker

Worker

Worker

Worker

39

Example: Schedule Processing

 Offload parameter sweep

to local workers

 Get peak value results when

processing is complete

 Plot results in local MATLAB

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

40

Summary of Example

 Used batch for off-loading work

 Used matlabpool option to

off-load and run in parallel

 Used load to retrieve

worker’s workspace

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

0

2

4

6 1
2

3
4

5

0.5

1

1.5

2

2.5

Stiffness (k)
Damping (b)

P
e

a
k
 D

is
p

la
c
e

m
e

n
t
(x

)

41

Task-Parallel Workflows

 parfor

– Multiple independent iterations

– Easy to combine serial and parallel code

– Workflow

 Interactive using matlabpool

 Scheduled using batch

 jobs/tasks

– Series of independent tasks; not necessarily iterations

– Workflow  Always scheduled

42

Scheduling Jobs and Tasks

TOOLBOXES

BLOCKSETS

Scheduler

Job

Results

Worker

Worker

Worker

Worker

Task

Result

Task

Task

Task

Result

Result

Result

43

Example: Scheduling Independent

Simulations

 Offload three independent

approaches to solving our

previous ODE example

 Retrieve simulated displacement

as a function of time for

each simulation

 Plot comparison of results

in local MATLAB

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

44

Summary of Example

 Used parcluster to find resource

 Used createJob and createTask

to set up the problem

 Used submit to off-load and

run in parallel

 Used fetchOutputs

to retrieve all task outputs

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

45

Factors to Consider for Scheduling

 There is always an overhead to distribution

– Combine small repetitive function calls

 Share code and data with workers efficiently

– Set job properties (AttachedFiles,AdditionalPaths)

 Minimize I/O

– Enable Workspace option for batch

 Capture command window output

– Enable CaptureDiary option for batch

46

Parallel Computing enables you to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

47

MATLAB and Parallel Computing Tools

Industry Libraries

Message Passing Interface (MPI)

Parallel Computing with MATLAB

 Built in parallel functionality

within specific toolboxes

(also requires Parallel

Computing Toolbox)

 High level parallel functions

 Low level parallel functions

 Built on industry

standard libraries

gpuArray batch parfor

jobs, tasks

ScaLAPACK

O
p

ti
m

iz
a

ti
o

n
 T

o
o

lb
o

x

G
lo

b
a

l
O

p
ti

m
iz

a
ti

o
n

T

o
o

lb
o

x

C
o

m
m

u
n

ic
a

ti
o

n
s

S
y

st
em

 T
o

o
lb

o
x

S
im

u
li

n
k

 D
es

ig
n

O

p
ti

m
iz

a
ti

o
n

B
io

in
fo

rm
a

ti
cs

T

o
o

lb
o

x

a
n

d
 m

o
re

…

S
ta

ti
st

ic
s

T
o

o
lb

o
x

48

Run up to 12 Local Workers on Desktop

 Rapidly develop parallel

applications on local

computer

 Take full advantage of

desktop power

 Separate computer

cluster not required

Desktop Computer

Parallel Computing Toolbox

49

Scale Up to Clusters, Grids and Clouds

Desktop Computer

Parallel Computing Toolbox

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

50

 Leveraging the power of vector & matrix operations

 Addressing bottlenecks

 Utilizing additional processing power

 Summary

Agenda

51

Key Takeaways

 Consider performance benefit of vector and

matrix operations in MATLAB

 Analyze your code for bottlenecks and

address most critical items

 Leverage parallel computing tools

to take advantage of additional

computing resources

52

Sample of Other Performance Resources

 MATLAB documentation

Programming Fundamentals  Software Development  Performance

 Memory Management Guide
www.mathworks.com/support/tech-notes/1100/1106.html?BB=1

 The Art of MATLAB, Loren Shure’s blog

blogs.mathworks.com/loren/

 MATLAB Answers
http://www.mathworks.com/matlabcentral/answers/

http://www.mathworks.com/support/tech-notes/1100/1106.html?BB=1
http://www.mathworks.com/support/tech-notes/1100/1106.html?BB=1
http://www.mathworks.com/support/tech-notes/1100/1106.html?BB=1
http://blogs.mathworks.com/loren/
http://blogs.mathworks.com/loren/
http://blogs.mathworks.com/loren/
http://www.mathworks.com/matlabcentral/answers/
http://www.mathworks.com/matlabcentral/answers/

53

Support and Community

60

Training Services
Exploit the full potential of MathWorks products

Flexible delivery options:

 Public training available worldwide

 Onsite training with standard or

customized courses

 Web-based training with live, interactive

instructor-led courses

 Self-paced interactive online training

More than 30 course offerings:

 Introductory and intermediate training on MATLAB, Simulink,

Stateflow, code generation, and Polyspace products

 Specialized courses in control design, signal processing, parallel computing,

code generation, communications, financial analysis,

and other areas

http://www.mathworks.co.uk/consulting/consult2.shtml

61

Schedule

Note. 상기 일정은 등록 수에 따라 조기 마감이 될 수 있으며 또는 취소가 될 수 있습니다.

Courses Days Level Mar. Apr. May Jun. Jul. Aug.

MATLAB Fundamentals 3 기본 11~13
1~3

22~24
20~22 10~12

1~3
22~24

5~7
19~21

Simulink for System and Algorithm Modeling 2 기본 14~15
4~5

25~26
23~24 13~14

4~5
25~26

12~13

Signal Processing with Simulink 3 기본 19~21 26~28

Parallel Computing with MATLAB 2 중급

MATLAB Based Optimization Techniques 1 중급 8~8 11~11

Image Processing with MATLAB 2 중급 6~7 9~10

MATLAB for Data Processing and Visualization 1 중급 4~4

Statistical Methods in MATLAB 2 중급 14~15 22~23

62

Contact

 Account Manager 이장원 차장

 johney.lee@mathworks.com

 02-6006-5128

 Application Engineer 엄준상

 joseph.eom@mathworks.com

 02-6006-5136

 Technical Support

 www.mathworks.com/support

mailto:johney.lee@mathworks.com
mailto:joseph.eom@mathworks.com
http://www.mathworks.com/support

63 © 2012 The MathWorks, Inc.

