
Getting Started with Parallel Computing using

MATLAB: Interactive and Scheduled Applications

Created by S. Zaranek, E. Johnson and A. Chakravarti

1. Objectives

This user guide provides an end user with instructions on how to get started running

parallel MATLAB applications using a desktop computer or a cluster.

2. Assumptions

 User has access to MATLAB and Parallel Computing Toolbox on the desktop

computer or head node of the cluster.

If running on a cluster:

 MATLAB Distributed Computing Server has been installed by an administrator on

the cluster.

 The desktop MATLAB client has been configured to connect to the cluster. If this has

not been done, you should contact the cluster administrator.

3. Getting the Example Files

Unzip the demoFiles.zip file that was provided along with this guide. You can

add the files to the MATLAB path by running the addpath command in

MATLAB.

>> addpath <location of files>

4. Examples Running Locally

In this section, you will be running and submitting jobs using the local

configuration.

If your workflow will ultimately involve submitting jobs to a cluster, you can

follow this section by switching the default configuration from local to that of

your cluster and running these jobs again. This is described in Section 5.

You can set the configuration to local, either at the command-line

>> defaultParallelConfig('local')

or by using the user interface found in the parallel menu. See screen snapshot

below.

For more information on configurations and programming with user

configurations, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/f5-16141.html#f5-16540

1. Using an Interactive MATLAB pool

To interactively run your parallel code, you first need to open a MATLAB pool.

This reserves a collection of MATLAB worker sessions to run your code. The

MATLAB pool can consist of MATLAB sessions running on your local machine

or on a remote cluster. In this case, we are initially running on your local machine.

You can use matlabpool open to start an interactive worker pool. If the number

of workers is not defined, the default number defined in your configuration will

be used. A good rule of thumb is to not open more workers then cores available. If

the Configuration argument is not provided, matlabpool will use the default

configuration as setup in the beginning of this section. When you are finished

running with your MATLAB pool, you can close it using matlabpool close.

Two of the main parallel constructs that can be run on a MATLAB pool are

parfor loops (parallel for-loops) and spmd blocks (single program - multiple

data blocks). Both constructs allow for a straight-forward mixture of serial and

parallel code.

parfor loops are used for task-parallel (i.e. embarrassingly parallel) applications.

parfor is used to speed up your code. Below is a simple for loop converted into

a parfor to run in parallel, with different iterations of the loop running on

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/f5-16141.html#f5-16540
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/f5-16141.html#f5-16540

different workers. The code outside the parfor loop executes as traditional

MATLAB code (serially, in your client MATLAB session).

Note: The example below is located in the m-file, ‘parforExample1.m’.

matlabpool open 2 % can adjust according to your resources

N = 100;

M = 200;

a = zeros(N,1);

tic; % serial (regular) for-loop

for i = 1:N

 a(i) = a(i) + max(eig(rand(M)));

end

toc;

tic; % parallel for-loop

parfor i = 1:N

 a(i) = a(i) + max(eig(rand(M)));

end

toc;

matlabpool close

spmd blocks are a single program multiple data (SPMD) language construct. The

"single program" aspect of spmd means that the identical code runs on multiple

labs. The code within the spmd body executes simultaneously on the MATLAB

workers. The "multiple data" aspect means that even though the spmd statement

runs identical code on all workers, each worker can have different, unique data for

that code.

spmd blocks are useful when dealing with large data that cannot fit on a single

machine. Unlike parfor, spmd blocks support inter-worker communication.

They allow:

 Arrays (and operations on them) to be distributed across multiple workers

 Messages to be explicitly passed amongst workers.

The example below creates a distributed array (different parts of the array are

located on different workers) and computes the svd of this distributed array. The

spmd block returns the data in the form of a composite object (behaves similarly

to cells in serial MATLAB. For specifics, see the documentation link below).

Note: The example below is located in the m-file, ‘spmdExample1.m’.

matlabpool open 2 % can adjust according to your resources

M = 200;

spmd

 N = rand(M,M,codistributor); % 200x100 chunk per worker

 A = svd(N);

end

A = max(A{1}); % Indexing into the composite object

disp(A)

clear N

matlabpool close

For information on matlabpool, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/matlabpool.html

For information about getting started using parfor loops, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/brb2x2l-1.html

For information about getting started using spmd blocks, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/brukbno-2.html

 For information regarding composite objects:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/brukctb-1.html

 For information regarding distributed arrays:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/bqi9fln-1.html

2a. Using Batch to Submit Serial Code (Best for Scripts)

batch sends your serial script

to run on one worker in your

cluster. All of the variables in

your client workspace (e.g. the

MATLAB process you are

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/matlabpool.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/matlabpool.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brb2x2l-1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brb2x2l-1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brukbno-2.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brukbno-2.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brukctb-1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brukctb-1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/bqi9fln-1.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/bqi9fln-1.html

submitting from) are sent to the worker by default. You can alternatively pass a

subset of these variables by defining the Workspace argument and passing the

desired variables in a structure.

After your job has finished, you can use the load command to retrieve the

results from the worker-workspace back into your client-workspace. In this and

all examples following, we use a wait to ensure the job is done before we load

back in worker-workspace. This is optional, but you can not load the data from a

task or job until that task or job is finished. So, we use wait to block the

MATLAB command line until that occurs.

If the Configuration argument is not provided, batch will use the default

configuration that was set up above.

Note: For this example to work, you will need ‘testBatch.m’ on the machine that

you are submitting from (i.e. the client machine). This example below is located in

the m-file, ‘submitJob2a.m’.

%% This script submits a serial script using batch

job2a = batch('testBatch');

wait(job2a); % only can load when job is finished

sprintf('Finished Running Job')

load(job2a); % loads all variables back

sprintf('Loaded Variables into Workspace')

% load(job2a, 'A'); % only loads variable A

destroy(job2a) % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

For more information on batch, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/batch.html

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/batch.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/batch.html

and here:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/brjw1e5-1.html#brjw1fx-3

2b. Using Batch to Submit Scripts that Run Using a MATLAB pool

batch with the 'matlabpool' option sends scripts containing parfor or

spmd to run on workers via a MATLAB pool. In this process, one worker

behaves like a MATLAB client process that facilitates the distribution of the job

amongst the workers in the pool and runs the serial portion of the script.

Therefore, specifying a 'matlabpool' of size N actually will result in N+1

workers being used.

Just like in step 2a, all variables are automatically sent from your client

workspace (i.e. the workspace of the MATLAB you are submitting from) to the

worker’s workspace on the cluster. load then brings the results from your

worker’s workspace back into your client’s workspace. If a configuration is not

specified, batch uses the default configuration as defined in the beginning of this

section.

Note: For this example to work, you will need ‘testParforBatch.m’ on the machine

that you are submitting from (i.e. the client machine). This example below is

located in the m-file, submitJob2b.m.

%% This script submits a parfor script using batch

job2b = batch('testParforBatch','matlabpool',2);

wait(job2b); % only can load when job is finished

sprintf('Finished Running Job')

load(job2b); % loads all variables back

sprintf('Loaded Variables into Workspace')

% load(job2b, 'A'); % only loads variable A

destroy(job2b) % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brjw1e5-1.html#brjw1fx-3
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/brjw1e5-1.html#brjw1fx-3

The above code submitted a script containing a parfor. You can submit a script

containing a spmd block in the same fashion by changing the name of the

submission script in the batch command.

Note: For this example to work, you will need ‘testSpmdBatch.m’ on the machine

that you are submitting from (i.e. the client machine). This example below is

located in the m-file, submitJob2b_spmd.m.

%% This script submits a spmd script using batch

job2b = batch('testSpmdBatch','matlabpool',2);

wait(job2b); % only can load when job is finished

sprintf('Finished Running Job')

load(job2b); % loads all variables back

sprintf('Loaded Variables into Workspace')

% load(job2b, 'A'); % only loads variable A

destroy(job2b) % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

3. Run Task-Parallel Example with Jobs and Tasks

In this example, we are sending a task parallel job with multiple tasks. Each task

evaluates the built-in MATLAB function. The createTask function in the

below example is passed the job, the function to be run in the form of a function

handle (@sum), the number of output arguments of the function (1), and the input

argument to the sum function in the form of a cell array ({[1 1]});

If not given a configuration, findResource uses the scheduler found in the

default configuration defined in the beginning of this section.

Note: This example is located in the m-file, ‘submitJob3a.m’.

%% This script submits a job with 3 tasks

sched = findResource();

job3a = createJob(sched);

createTask(job3a, @sum, 1, {[1 1]});

createTask(job3a, @sum, 1, {[2 2]});

createTask(job3a, @sum, 1, {[3 3]});

submit(job3a)

waitForState(job3a, 'finished') %optional

sprintf('Finished Running Job')

results = getAllOutputArguments(job3a);

sprintf('Got Output Arguments')

destroy(job3a) % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

results should contain the following:

You can also call a user-created function in the same way as shown above. In that

case, you will need to make sure that any scripts, files, or functions that the task

function uses are accessible to the cluster. You can do this by sending those files

to the cluster via the FileDependencies property or by directing the worker to

a shared directory containing those files via the PathDependencies property.

An example of using FileDependencies is shown below:

Note: you will need to have a ‘testTask.m’ file on the machine you are submitting

from for this example to work. This example is located in the m-file,

‘submitJob3b.m’.

 % This script submits a job with 3 tasks

sched = findResource();

job3b = createJob(sched,'FileDependencies',{'testTask.m'});

createTask(job3b, @testTask, 1, {1,1});

createTask(job3b, @testTask, 1, {2,2});

createTask(job3b, @testTask, 1, {3,3});

submit(job3b)

waitForState(job3b, 'finished') % optional

sprintf('Finished Running Job')

results = getAllOutputArguments(job3b);

sprintf('Got Output Arguments')

destroy(job3b) % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

results should contain the following:

For more information on File and Path Dependencies, see the below

documentation.

File Dependencies:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/filedependencies.html

Path Dependencies:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/pathdependencies.html

More general overview about sharing code between client and workers:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/bqur7ev-2.html#bqur7ev-9

4. Run Task-Parallel Example with a MATLAB pool job (best for parfor or

spmd in functions)

In this example, we are sending a MATLAB pool job with a single task. This is

nearly equivalent to sending a batch job (see step 2b) with a parfor or a spmd

block, except this method is best used when sending functions and not scripts. It

behaves just like jobs/tasks explained in step 3. The function referenced in the

task contains a parfor.

Note: For this example to work, you will need ‘testParforJob.m’ on the machine

that you are submitting from (i.e. the client machine). This example is located in

the m-file, ‘submitJob4.m’.

% This script submits a function that contains parfor

sched = findResource();

job4 = createMatlabPoolJob(sched,'FileDependencies',...

 {'testParforJob.m'});

createTask(job4, @testParforJob, 1, {});

set(job4, 'MaximumNumberOfWorkers', 3);

set(job4, 'MinimumNumberOfWorkers', 3);

submit(job4)

waitForState(job4, 'finished') % optional

sprintf('Finished Running Job')

results = getAllOutputArguments(job4);

sprintf('Got Output Arguments')

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/filedependencies.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/filedependencies.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/pathdependencies.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/pathdependencies.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/bqur7ev-2.html#bqur7ev-9
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/bqur7ev-2.html#bqur7ev-9

destroy(job4) % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

results{1} should contain a [50x1 double].

For more information on creating and submitting MATLAB pool jobs, see

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/creatematlabpooljob.html

5. Run Data-Parallel Example

In this step, we are sending a data parallel job with a single task. The format is

similar to that of jobs/tasks (see step 3). For parallel jobs, you only have one task.

That task refers to a function that uses distributed arrays, labindex, or some

mpi functionality. In this case, we are running a simple built in function

(labindex) which takes no inputs and returns a single output.

labindex returns the ID value for each of worker processes that ran the it . The

value of labindex spans from 1 to n, where n is the number of labs running the

current job

Note: This example is located in the m-file, ‘submitJob5.m’.

%% Script submits a data parallel job, with one task

sched = findResource();

job5 = createParallelJob(sched);

createTask(job5, @labindex, 1, {});

set(job5, 'MaximumNumberOfWorkers', 3);

set(job5, 'MinimumNumberOfWorkers', 3);

submit(job5)

waitForState(job5, 'finished') % optional

sprintf('Finished Running Job')

results = getAllOutputArguments(job5);

sprintf('Got Output Arguments')

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/creatematlabpooljob.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/creatematlabpooljob.html

destroy(job5); % permanently removes job data

sprintf('Test Completed')

If you have submitted successfully, you should see the following variables appear

in your client workspace:

results should contain the following:

For more information on creating and submitting data parallel jobs, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/createparalleljob.html

For more information on, labindex, see:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/labindex.html

5 Submitting Jobs to Your Cluster

Rerun the above section (Section 4) with your configuration changed from local

to the configuration name corresponding to your cluster.

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/createparalleljob.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/createparalleljob.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/labindex.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/labindex.html

 6. Summary Chart for Scheduling Options

 parfor spmd function script pure
task

parallel

pure
data

parallel

parallel
and

serial

batch
   

matlabpooljob
   

jobs and tasks  
paralleljob  

7. Next Steps

Refer to the documentation for the Parallel Computing Toolbox to learn about

more functionality for solving your MATLAB problems in parallel. A good place

to start is here:

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/a

ccess/helpdesk/help/toolbox/distcomp/f3-6010.html

You can also consider taking a training course through The MathWorks to learn

more in focused, hands-on environment.

http://www.mathworks.com/services/training/index.html

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/f3-6010.html
http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/index.html?/access/helpdesk/help/toolbox/distcomp/f3-6010.html
http://www.mathworks.com/services/training/index.html

	Getting Started with Parallel Computing using MATLAB: Interactive and Scheduled Applications
	Created by S. Zaranek, E. Johnson and A. Chakravarti
	Objectives
	Assumptions
	4. Examples Running Locally
	5 Submitting Jobs to Your Cluster
	Rerun the above section (Section 4) with your configuration changed from local to the configuration name corresponding to your cluster.
	6. Summary Chart for Scheduling Options
	7. Next Steps

