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Why MIMO?

 Array gain (beamforming), spatial division multiple access

 Spatial multiplexing: Rate = min(Nt, Nr)log2(1+SNR)

44
 Reliability: BEP ~ SNR-(NtNr)



Conventional vs. Single-RF MIMO

Conventional MIMO

Single-RF MIMO

55
A. Mohammadi and F. M. Ghannouchi, “Single RF Front-End MIMO Transceivers”, IEEE Commun.
Mag., Vol. 49, No. 12, pp. 104-109, Dec. 2011.



Why Single-RF?

 Regardless of the use as diversity or spatial multiplexing system, the main
drawback of conventional MIMO systems is the increased complexity,y p y
increased power/energy consumption, and high cost. Why?

Inter-channel interference (ICI): Introduced by coupling multiple symbols in
time and space – signal processing complexitytime and space signal processing complexity.

Inter-antenna synchronization (IAS): Detection algorithms require that all
symbols are transmitted at the same time.

Multiple radio frequency (RF) chains: RF elements are expensive, bulky, no
simple to implement, and do not follow Moore’s law.

Energy consumption: The energy efficiency decreases linearly with the number

66

Energy consumption: The energy efficiency decreases linearly with the number
of active antennas (RF chains) and it mostly depends on the Power Amplifiers
(>60%) – EARTH model.



The Energy Efficiency (EE) Challenge (1/3)

77
Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green Cellular Networks: A Survey, Some Research
Issues and Challenges”, IEEE Commun. Surveys & Tutorials, Vol. 13, No. 4, pp. 524-540, Nov. 2011.



The Energy Efficiency (EE) Challenge (2/3)

BS Power Consumption

88
Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green Cellular Networks: A Survey, Some Research
Issues and Challenges”, IEEE Commun. Surveys & Tutorials, Vol. 13, No. 4, pp. 524-540, Nov. 2011.



The Energy Efficiency (EE) Challenge (3/3)

S. D. Gray, “Theoretical and Practical Considerations for the Design of Green Radio Networks”, IEEE VTC-
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2011 Spring, Budapest, Hungary, May 2011.
3GPP TSG-RAN WG2 #67, "eNB power saving by changing antenna number", R2-094677 from Huawei:
http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_67/Tdoclist/History/ADN_Tdoc_List_RAN2_67.htm.



Now, Imagine a New Modulation for MIMOs:

 Having one (or few) active RF chains but still being able to
l i ll i l f l i l i dexploit all transmit-antenna elements for multiplexing and

transmit-diversity gains

 Offering Maximum-Likelihood (ML) optimum decoding
f i h i l d di l iperformance with single-stream decoding complexity

 Working without the need of (power inefficient) linear
modulation schemes (QAM) or allowing us to use constant-

l d l i (PSK) i h li ibl fenvelope modulation (PSK) with negligible performance
degradation

Spatial Modulation (SM) 

1010

p ( )
has the inherent potential to meet these goals



SM – In a Nutshell
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SM – How It Works (3D Constellation Diagram)
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SM – How It Works (1/3)
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SM – How It Works (2/3)
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SM – How It Works (3/3)
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SM – Transmitter
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SM – Wireless Channel
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SM – Receiver

Rx a priori CSI Detection
Receiver

D0(+) = distance(Rx,+Tx0)
D0(-) = distance(Rx,-Tx0)

D1(+) = distance(Rx +Tx1)D1( ) = distance(Rx,+Tx1)
D1(-) = distance(Rx,-Tx1)

D2(+) = distance(Rx,+Tx2)
D2( ) di (R T 2)

Compute
min{Di(±)}

D2(-) = distance(Rx,-Tx2)

D3(+) = distance(Rx,+Tx3)
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Common Misunderstandings

 What is the difference with Transmit Antenna Selection (TAS)?
 TAS is closed-loop. SM is open-loop. TAS is closed loop. SM is open loop.

 TAS provides transmit-diversity. SM provides spatial-multiplexing.

 In TAS, antenna switching depends on the end-to-end performance. In SM,
antenna switching depends on the incoming bit-stream.

 SIMO: log2(M) bpcu – MIMO: Ntlog2(M) bpcu – SM: log2(Nt)+log2(M) SIMO: log2(M) bpcu MIMO: Ntlog2(M) bpcu SM: log2(Nt) log2(M)
bpcu. So, SM is sub-optimal from the spectral efficiency (SE) point of view.
Why using it?
 C B h b i l i l i d Correct. But what about signal processing complexity, cost, and power

consumption, and energy efficiency (EE)?

 Are we looking for SE-MIMO? For EE-MIMO? Or for a good SE vs. EEg g
tradeoff ?

 SM needs many more transmit-antennas than conventional MIMO to SM needs many more transmit-antennas than conventional MIMO to
achieve the same spectral efficiency. Is the comparison fair? Is having so
many antennas practical?

1919

 What does fair mean? Same transmit-antennas? Same RF chains?

 What about massive MIMOs? What about mm-Wave communications?



SE vs. EE Tradeoff  (1/2)

 SE-oriented systems are designed to maximize the capacity under peak or
average power constraints, which may lead to transmitting with theg p y g
maximum allowed power for long periods, thus deviate from EE design.

 EE is commonly defined as information bits per unit of transmit energy. It has been
studied from the information-theoretic perspective for various scenariosstudied from the information-theoretic perspective for various scenarios.

 For an additive white Gaussian noise (AWGN) channel, it is well known that for a
given transmit power, P, and system bandwidth, B, the channel capacity is:

   2
0

1 2 log 1 1 2 SE
PR

N B


 
   

 
 bits per real dimension or degrees of freedom (DOF), where N0 is the noise

power spectral density. According to the Nyquist sampling theory, DOF per second
i 2B Th f h h l i i C 2BR b/ C l h EE i

0N B 

is 2B. Therefore, the channel capacity is C = 2BR b/s. Consequently, the EE is:

   2

2 SE
EE R

C R
P

   

 It follows that the EE decreases monotonically with R (i.e., with SE).

   2
0 02 1 2 1SE

EE RP N N 


 
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G. Y. Li et al., "Energy-Efficient Wireless Communications: Tutorial, Survey, and Open Issues", IEEE
Wireless Commun.,Mag., Vol. 18, No. 6, pp. 28-35, Dec. 2011.



SE vs. EE Tradeoff  (2/2)

2121
Y. Chen et al., “Fundamental Tradeoffs on Green Wireless Networks”, IEEE Commun. Mag., vol. 49, no. 6,
pp. 30–37, June 2011,.



Massive MIMO (1/5)

G. Wright “GreenTouch Initiative: Large Scale Antenna Systems Demonstration”, 2011 Spring meeting,

2222

Seoul, South Korea. Available at: http://www.youtube.com/watch?v=U3euDDr0uvo.
T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”,
IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.



Massive MIMO (2/5)

 With very large MIMO, we think of systems that use antenna arrays with an
order of magnitude more elements than in systems being built today, say ag y g y y
hundred antennas or more.

 Very large MIMO entails an unprecedented number of antennas Very large MIMO entails an unprecedented number of antennas
simultaneously serving a much smaller number of terminals.

 In very large MIMO systems each antenna unit uses extremely low power In very large MIMO systems, each antenna unit uses extremely low power,
of the order of mW.

 A b l i d b lk i h l i l bl As a bonus, several expensive and bulky items, such as large coaxial cables,
can be eliminated altogether. (The coaxial cables used for tower-mounted
base stations today are up to four centimeters in diameter).

 Very-large MIMO designs can be made extremely robust in that the failure
of one or a few of the antenna units would not appreciably affect the system.

http://www.commsys.isy.liu.se/~egl/vlm/vlm.html.

pp y y
Malfunctioning individual antennas may be hotswapped.

2323

F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up
MIMO: Opportunities and Challenges with Very Large Arrays”, IEEE Signal Proces. Mag., to appear.
Available at: http://arxiv.org/pdf/1201.3210v1.pdf.



Massive MIMO (3/5)
 The main effect of scaling up the dimensions is that uncorrelated thermal

noise and fast fading can be averaged out and vanish so that the system is
predominantly limited by interference from other transmitters.

 If we could assign an orthogonal pilot sequence to every terminal in every
cell then large numbers of base station antennas would eventually defeat all
noise and fading, and eliminate both intra-and inter-cell interference.

 But there are not enough orthogonal pilot sequences for all terminals. Pilot
sequences have to be reused. The performance of a very large array
becomes limited by interference arising from re-using pilots in neighboringbecomes limited by interference arising from re using pilots in neighboring
cells (pilot contamination problem).

 With an infinite number of antennas the simplest forms of user detection With an infinite number of antennas, the simplest forms of user detection
and precoding, i.e., matched filtering (MF) and eigenbeamforming, become
optimal.

 Spectral efficiency is independent of bandwidth, and the required
transmitted energy per bit vanishes.

2424
T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”,
IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.



Massive MIMO (4/5) – In Formulas

 Consider a MIMO Multiple Access (MAC) system with N
antennas per BS and K users per cell:antennas per BS and K users per cell:

K

k kx y h n

 where channel and noise are i.i.d. RVs with zero mean and
i i

1k


unit variance.

 By the strong law of large numbers:
1

and const

1 H
m mN KN  

h y x

 Thus, with an unlimited number of BS antennas:
 Uncorrelated interference and noise vanish

 The matched filter is optimal

 The transmit power can be made arbitrarily small

2525
T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”,
IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.



Massive MIMO (5/5) – In Formulas

 Assume now that transmitter m and j use the same pilot:
ˆ

 
estimation noisepilot contaminat

m

ion

jm m  h h h n

 Thus, by the strong law of large numbers:

1
and const

1 ˆ H

N Km m jN  
 h y x x

 Thus, with an unlimited number of BS antennas:
 Uncorrelated interference, noise, and estimation errors vanish, ,

 The matched filter is optimal

 The transmit power can be made arbitrarily smallp y

 But, the performance is limited by pilot contamination

2626
T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”,
IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.



Massive MIMO vs. SM-MIMO

 Massive MIMO:
 Many (hundreds or more) transmit-antennas

 Based on beamforming (needs CSIT)g ( )

 All transmit-antennas are simultaneously-active: multi-RF MIMO
but antennas are less expensive and more EE than state-of-the-art

 SM-MIMO:
 Many (hundreds or more) transmit-antennas

 Inherently open-loop Inherently open loop

 One (or few) transmit-antennas are simultaneously-active: single-
RF MIMO

2727
T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas”,
IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.



Transmission Concepts Related to SM (1/4)

New multiple antenna designs based on compact parasitic architectures have
been proposed to enable multiplexing gains with a single active RF element andbeen proposed to enable multiplexing gains with a single active RF element and
many passive antenna elements. The key idea is to change the radiation pattern
of the array at each symbol time instance, and to encode independent
information streams onto angular variations of the far-field in the wave-vector
domain.

A. Kalis, A. G. Kanatas, and C. B. Papadias, “A novel approach to MIMO transmission using a single RF
front end”, IEEE J. Select. Areas Commun., vol. 26, no. 6, pp. 972–980, Aug. 2008.
O Al b di C Di h T A li h i C di d d S i l

2828

O. N. Alrabadi, C. Divarathne, P. Tragas, A. Kalis, N. Marchetti, C. B. Papadias, and R. Prasad, “Spatial
multiplexing with a single radio: Proof–of–concept experiments in an indoor environment with a 2.6 GHz
prototypes”, IEEE Commun. Lett., vol. 15, no. 2, pp. 178–180, Feb. 2011.



Transmission Concepts Related to SM (2/4)

New MIMO schemes jointly combining multiple-antenna transmission and
Automatic Repeat reQuest (ARQ) feedback have been proposed to avoid toAutomatic Repeat reQuest (ARQ) feedback have been proposed to avoid to
keep all available antennas on, thus enabling MIMO gains with a single RF
chain and a single power amplifier. This solution is named Incremental MIMO.
The main idea is to reduce complexity and to improve the energy efficiency by
having one active antenna at a time, but to exploit ARQ feedback to randomly
cycle through the available antennas at the transmitter in case of incorrect datacycle through the available antennas at the transmitter in case of incorrect data
reception.

2929

P. Hesami and J. N. Laneman, “Incremental use of multiple transmitters for low-complexity diversity
transmission in wireless systems,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2522-2533, Sep. 2012.



Transmission Concepts Related to SM (3/4)

New directional modulation schemes for mm-Wave frequencies have been
proposed to enable secure and low-complexity wireless communications Theproposed to enable secure and low-complexity wireless communications. The
solution is named Antenna Subset Modulation (ASM). The main idea in ASM is
to modulate the radiation pattern at the symbol rate by driving only a subset of
antennas in the array. While randomly switching antenna subsets does not
affect the symbol modulation for a desired receiver along the main direction, it
effectively randomizes the amplitude and phase of the received symbol for aneffectively randomizes the amplitude and phase of the received symbol for an
eavesdropper along a sidelobe.

3030

N. Valliappan, A. Lozano, and R. W. Heath Jr., "Antenna subset modulation for secure millimeter-wave
wireless communication". Available at: http://repositories.lib.utexas.edu/handle/2152/ETD-UT-2012-05-
5547.



Transmission Concepts Related to SM (4/4)

3131

N. Valliappan, A. Lozano, and R. W. Heath Jr., "Antenna subset modulation for secure millimeter-wave
wireless communication". Available at: http://repositories.lib.utexas.edu/handle/2152/ETD-UT-2012-05-
5547.
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A Glimpse into the History of  SM 

2001 2002 2004 2006 2008 2011 2012 / 20132009

[2001] Y. Chau, S.-H. Yu, “Space Modulation on Wireless Fading Channels”, IEEE VTC-Fall

[2002] H. Haas, E. Costa, E. Schultz, “Increasing Spectral Efficiency by Data Multiplexing Using

/ 39

[2002] H. Haas, E. Costa, E. Schultz, Increasing Spectral Efficiency by Data Multiplexing Using
Antennas Arrays”, IEEE PIMRC

[2004] S. Song, et al., “A Channel Hopping Technique I: Theoretical Studies on Band Efficiency
and Capacity”, IEEE ISCAp y ,

[2006] R. Y. Mesleh, H. Haas, et al., “Spatial modulation - A New Low Complexity Spectral
Efficiency Enhancing Technique”, ChinaCom

[2008] Y. Yang and B. Jiao, “Information-Guided Channel-Hopping for High Data Rate Wireless[2008] Y. Yang and B. Jiao, Information Guided Channel Hopping for High Data Rate Wireless
Communication”, IEEE Commun. Lett.

[2008] R. Y. Mesleh, H. Haas, et al., “Spatial Modulation”, IEEE Trans. Veh. Technol.

[2009] J Jeganathan A Ghrayeb et al “Space Shift Keying Modulation for MIMO Channels”[2009] J. Jeganathan, A. Ghrayeb, et al., Space Shift Keying Modulation for MIMO Channels ,
IEEE Trans. Wireless Commun.

[2011] M. Di Renzo, H. Haas, P. M. Grant, “Spatial Modulation for Multiple-Antenna Wireless
Systems - A Survey” IEEE Commun Mag
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Research Groups Working on SM 
 University of Edinburgh, UK (H. Haas)

 CNRS – SUPELEC – University of Paris-Sud XI, France (M. Di Renzo)

 Concordia University, Canada (A. Ghrayeb)

 University of Tabuk, Saudi Arabia (R. Y. Mesleh)

 University of Southampton, UK (L. Hanzo)

 Princeton University, US (V. Poor)

 I b l T h i l U i i T k (E B E P i i) Istanbul Technical University, Turkey (E. Basar, E. Panayirci)

 Tokyo University, Japan (S. Sugiura)

 Indian Institute of Science India (K V S Hari and A Chockalingam) Indian Institute of Science, India (K. V. S. Hari and A. Chockalingam)

 Québec University - INRS, Canada (S. Aissa)

 The University of Akron, US (H. R. Bahrami) The University of Akron, US (H. R. Bahrami)

 Academia Sinica, Taiwan (a large group)

 Tsinghua University and many other universities, China (many groups)

 Le Quy Don Technical University, Vietnam (T. X. Nam)

 etc., etc., etc…

3434
 Collaborations with: Univ. of L’Aquila (Italy), CTTC (Spain), Univ. of Bristol

(UK), Heriot-Watt Univ. (UK), EADS (Germany), etc…
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Transmitter Design – Encoding (1/7)
Spatial Modulation (SM)

3 bpcu3 bpcu

t tl sx

3636
R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation”, IEEE Trans. Veh.
Technol., vol. 57, no. 4, pp. 2228-2241, July 2008.



Transmitter Design – Encoding (2/7)
Space Shift Keying (SSK)

 Information is conveyed only by the Spatial Constellation diagram Information is conveyed only by the Spatial-Constellation diagram
 No signal modulation  more efficient power amplifiers (no linearity

constraints))

 Simplified demodulation

 Larger antenna-arrays are needed for the same spectral efficiency

t

l
l   y Hx n h n
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J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “Space shift keying modulation for MIMO
channels”, IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692-3703, July 2009.



Transmitter Design – Encoding (3/7)
Generalized SM and SSK

 SM and SSK are appealing because of their single RF design which
greatly simplifies the transmitter.

 H h i However, their rates are:
 log2(Nt) + log2(M) bpcu for SM

 l (N ) b f SSK log2(Nt) bpcu for SSK

 R te nd comple it c n be tr ded off b llo in more th n one Rate and complexity can be traded-off by allowing more than one
active antenna in each time instance, as well as by allowing different
numbers of active antennas per time slots:p
 Generalized SSK

 Generalized SM

 Variable Generalized SSK/SM

3838



Transmitter Design – Encoding (4/7)
Generalized SSK (GSSK)

Rate = 3bpcuRate  3bpcu
Nt = 5
nt = 2

N  
2Rate log t

t

N
n

  
   

  
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J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for MIMO
channels,” IEEE PIMRC, pp. 1–5, 2008.



Transmitter Design – Encoding (5/7)
Generalized SM (GSM)

Rate = 4bpcup
Nt = 5
nt = 2
BPSKBPSK

 
2Rate log t

t

N
n

  
   

  
 2log

t

M
  


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Transmitter Design – Encoding (6/7)
Variable Generalized SSK/SM (VGSM/VGSSK)

Rate = 3bpcu + log2(M)
Nt = 4t

nt = 1 and 2
MQAM/MPSK

       Rate log log log 2 1 log 1
t

t

N
t NN

M M M N
    

                     VGSM 2 2 2 2
1

Rate log log log 2 1 log 1
t

t

t
n t

N

M M M N
n

N



                 


     




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VGSSK 2
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Rate log 2 t
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t N
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N
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n
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Transmitter Design – Encoding (7/7)
Reasoning on the Tradeoffs

 Performance

 2PEP SNR k hQ Hx Hx

 Signal processing complexity (detection)

 

Complexity GSM
Complexity SMR =

 Total vs active (RF chains) number of transmit antennas

nt

4242

 Total vs. active (RF chains) number of transmit-antennas



Outline
1. Introduction and Motivation behind SM-MIMO

2. History of SM Research and Research Groups Working on SM

3. Transmitter Design – Encoding

4. Receiver Design – Demodulation

E P f (N i l R l d M i T d )5. Error Performance (Numerical Results and Main Trends)

6. Achievable Capacity

7 Channel State Information at the Transmitter7. Channel State Information at the Transmitter

8. Imperfect Channel State Information at the Receiver

9. Multiple Access Interference

10. Energy Efficiency

11. Transmit-Diversity for SM

12. Spatially-Modulated Space-Time-Coded MIMO

13. Relay-Aided SM

14 SM in Heterogeneous Cellular Networks14. SM in Heterogeneous Cellular Networks

15. SM for Visible Light Communications

16. Experimental Evaluation of SM

4343

p

17. The Road Ahead – Open Research Challenges/Opportunities

18. Implementation Challenges of SM-MIMO



Receiver Design – Demodulation (1/12)

 The first proposed demodulator for SM is based on a two-step
approach:approach:
 Detection of the antenna index (spatial-constellation diagram)

 Detection of the modulated symbol (signal-constellation diagram) Detection of the modulated symbol (signal-constellation diagram)

H  h y
Detection

antenna-index 2
ˆ arg max

H
l

l
l

    
  

h y

hl l F  h

Detection
modulated-symbol  2

ˆˆ arg min H
l Fs

s s y h 
s

4444
R. Y. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation”, IEEE Trans. Veh.
Technol., vol. 57, no. 4, pp. 2228-2241, July 2008.



Receiver Design – Demodulation (2/12)

 Maximum-Likelihood (ML) optimum decoding:
 S i l d i l ll i di j i l d d d Spatial- and signal-constellation diagrams are jointly decoded

   2ˆ ˆ arg minl s  y Hx 
 

 ,
,

SM

, arg min l s Fl s
l s  y Hx

 
 SM 2

,
arg min l s F

l s
 y h x

 ,
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J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: Optimal detection and performance
analysis”, IEEE Commun. Lett., vol. 12, no. 8, pp. 545-547, Aug. 2008.



Receiver Design – Demodulation (3/12)

 Many other sub-optimal demodulators have been proposed recently.

 In general, they offer a trade-off between complexity and
performanceperformance.

 S ti th id f f f l / di SNR Sometimes, they provide goof performance for low/medium SNRs,
while they performance degrades for high SNRs.

 We consider two examples:
 The application of Compressed Sensing to SM The application of Compressed Sensing to SM

 The application of Sphere Decoding to SM

C.-M. Yu, S.-H. Hsieh, H.-W. Liang, C.-S. Lu, W.-H. Chung, S.-Y. Kuo, and S.-C. Pei, "Compressed
Sensing Detector Design for Space Shift Keying in MIMO Systems", IEEE Commun. Lett., vol. 16, no. 10,

1 6 1 9 O 01
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pp. 1556-1559, Oct. 2012.
A. Younis, M. Di Renzo, R. Y. Mesleh, and H. Haas, “Sphere decoding for spatial modulation,” IEEE Int.
Commun. Conf., June 2011, pp. 1–6.



Receiver Design – Demodulation (4/12)
Compressed Sensing (CS) Generalized Space Shift Keying

 Th id i l h i h i f SSK d l i h The idea is to leverage the inherent sparsity of SSK modulation: the
number of active antennas is much less that the radiating elements
(nt <Nt)( t t)

 SSK demodulation is re-formulated as a convex program via CS

 CS-SSK uses 1-norm metric instead of 2-norm of ML demodulation

 The demodulation complexity is:

 ML : tnO N N  
 

ML :

CS:

t
r tO N N

O N N n





"

 CS: r t tO N N n
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pp. 1556-1559, Oct. 2012.



Receiver Design – Demodulation (5/12)
Compressed Sensing (CS) Generalized Space Shift Keying


11 1t r tr rN N NN NC R C C


  

  
    

y Hx n

y x H n, , ,
 is a zero/one vector with  one entriest

C R C C
n

   



y x H n
x

 The idea is to leverage the inherent sparsity of SSK modulation: the
number of active antennas is much less that the radiating elements
(nt <Nt)

 x can be re-constructed with high probability by 1-norm
i i i i f llminimization, as follows:

 ˆ arg minx x

"

 1arg min



y Φx

x x

4848

C.-M. Yu, S.-H. Hsieh, H.-W. Liang, C.-S. Lu, W.-H. Chung, S.-Y. Kuo, and S.-C. Pei, "Compressed
Sensing Detector Design for Space Shift Keying in MIMO Systems", IEEE Commun. Lett., vol. 16, no. 10,
pp. 1556-1559, Oct. 2012.



Receiver Design – Demodulation (6/12)
Compressed Sensing (CS) Generalized Space Shift Keying

 where: where:
 Ф is an Nr×Nt that satisfies the Restricted Isometric Property (RIP). CS

theory says that, with high probability, matrix Ф can be obtained by
generating its elements from a Normal distribution with zero mean and
variance 1/Nr. The RIP ensures that pairs of columns of Φ are
orthogonal to each other with high probability.g g p y

 The number of observations Nr should be chosen as follows:

N  

 Th h O h l M hi P i (OMP) Th id i

2log t
r t

t

NN O n
n

  
      

 The authors use Orthogonal Matching Pursuit (OMP). The idea is
find the non-zero elements of x by computing the correlation ФTy. If
Ф satisfies the RIP, then ФTФ is nearly orthonormal and the largest

"

, y g
coefficients of ФTy correspond to the non-zero coefficients of x.

4949

C.-M. Yu, S.-H. Hsieh, H.-W. Liang, C.-S. Lu, W.-H. Chung, S.-Y. Kuo, and S.-C. Pei, "Compressed
Sensing Detector Design for Space Shift Keying in MIMO Systems", IEEE Commun. Lett., vol. 16, no. 10,
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Receiver Design – Demodulation (7/12)
Sphere Decoding (SD) Spatial Modulation

 Optimum detector based on the ML principle:

 ( ) ( ) 2[ , ] arg min || ||ML ML y-ht t Fs s   
1 2

{1,2,..., }
{ , ,..., }

2i | |

t
M

r

N
s s s s

N

h




 
 



1 2

2
,

{1,2,..., } 1
{ , ,..., }

arg min | |
t

M

r r
N r

s s s s

y h s
 


  
 
 



 Computational complexity of ML (real multiplications):

8C N N M

since evaluating each Euclidean distance requires 8 real

8ML r tC N N M

since evaluating each Euclidean distance requires 8 real
multiplications
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Commun. Conf., June 2011, pp. 1–6.



Receiver Design – Demodulation (7/12)
Sphere Decoding (SD) Spatial Modulation

 The SD algorithm avoids an exhaustive search by examining only
those points that lie inside a sphere of radius R:

    , 2 1r r rN N N    
22 r NR N 
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Receiver Design – Demodulation (8/12)
Sphere Decoding (SD) Spatial Modulation

 Three sphere decoders for SM are proposed and studied:

1. Rx-SD, which aims at reducing the receive search spaceg p

1 2

( , )
( ) ( ) 2

,
{1,2,..., } 1
{ }

[ , ] arg min | |Rx-SD Rx-SD
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 
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 

 






2. Tx-SD, which aims at reducing the transmit search space

1 2{ , ,..., }
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M
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s s s s
N s N
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
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3. C-SD, which aims at reducing both transmit and receive search
spaces
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Receiver Design – Demodulation (9/12)
Sphere Decoding (SD) Spatial Modulation – Rx-SD

 Rx–SD searches the paths leading to each point (l,s) as long as it is
still inside the sphere when adding up the signals at each receive-
antennaantenna

1 1( , )s

( )

2 2( , )s

1 2( , )s

2 1( , )s 2 1( , )s
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Receiver Design – Demodulation (10/12)
Sphere Decoding (SD) Spatial Modulation – Tx-SD

 ( ) ( ) 2
,
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Receiver Design – Demodulation (11/12)
Sphere Decoding (SD) Spatial Modulation – C-SD

 The C–SD is a two–step detector that works as follows:

1. First, the Tx–SD algorithm is used to reduce the transmit searchg
space. The subset of points ΘR is computed

2. Second, the Rx–SD algorithm is used to reduce the receive. Seco d, t e S a go t s used to educe t e ece ve
search space. More specifically, Rx–SD is applied only on the
subset of points ΘR computed in Step 1
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Receiver Design – Demodulation (12/12)
Sphere Decoding (SD) Spatial Modulation – C-SD

 The complexity of Rx–SD is:

8 ( )
tN M

C N s   
1 1

8 ( , )Rx SD r
s

C N s
 

 
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 The complexity of Tx–SD is:

8 card{ }C C N 

 The complexity of Cx–SD is:

8 card{ }
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 The complexity of Cx–SD is:
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Error Performance – Numerical Results (1/24)

6bpcu – i.i.d. Rayleigh fading
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Error Performance – Numerical Results (2/24)

8bpcu – i.i.d. Rayleigh fading
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Error Performance – Numerical Results (3/24)

6bpcu – 3GPP channel model
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Error Performance – Numerical Results (4/24)

8bpcu – 3GPP channel model
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Error Performance – Numerical Results (5/24)

3bpcu – i.i.d. Rayleigh fading – Nr=4
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Error Performance – Numerical Results (6/24)

3bpcu – i.i.d. Rayleigh fading – Nr=4
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Error Performance – Numerical Results (7/24)

1bpcu and 3bpcu – i.i.d. Rayleigh fading – Nr=2
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Error Performance – Numerical Results (8/24)

1bpcu and 3bpcu – i.i.d. Rayleigh fading – Nr=1, 2, 4
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Error Performance – Numerical Results (9/24)

3bpcu – i.i.d. Rayleigh fading – Nr=4

6666
J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Generalized space shift keying modulation for MIMO
channels,” IEEE PIMRC, pp. 1–5, 2008.



Error Performance – Numerical Results (10/24)

8bpcu – i.i.d. Rayleigh fading – Nr=4

GSM N 12 3GSM: Nt = 12, nt = 3
VGSM: Nt = 8, M = 2
SM: Nt = 128, M = 2t ,
SMX: Nt = 8, M = 2
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Error Performance – Numerical Results (11/24)

8bpcu – Rayleigh fading, exponential correlation (β=0.6) – Nr=4

GSM N 12 3GSM: Nt = 12, nt = 3
VGSM: Nt = 8, M = 2
SM: Nt = 128, M = 2t ,
SMX: Nt = 8, M = 2
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Error Performance – Numerical Results (12/24)

8bpcu – i.i.d. Rician fading – Nr=4

GSM N 12 3GSM: Nt = 12, nt = 3
VGSM: Nt = 8, M = 2
SM: Nt = 128, M = 2t ,
SMX: Nt = 8, M = 2
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Error Performance – Numerical Results (13/24)

8bpcu – Rician fading, exponential correlation (β=0.6) – Nr=4

GSM N 12 3GSM: Nt = 12, nt = 3
VGSM: Nt = 8, M = 2
SM: Nt = 128, M = 2t ,
SMX: Nt = 8, M = 2
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Error Performance – Numerical Results (14/24)

i.i.d. Rayleigh fading

Nt = 256
nt = 1
Varying Nr
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Error Performance – Numerical Results (15/24)

i.i.d. Rayleigh fading

Setup “2”:Setup 2 :
Nt = 256, nt = 2, Nr = 16

Setup “3”:
Nt = 64, nt = 3, Nr = 24
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i.i.d. Rayleigh fading

Setup “CS2-16”:
Nt = 256, nt = 2, Nr = 16

Setup “CS2-20”:Setup CS2 20 :
Nt = 256, nt = 2, Nr = 20

Setup “CS3-24”:
Nt = 64, nt = 3, Nr = 24

Setup “CS3-30”:
Nt = 64, nt = 3, Nr = 30
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i.i.d. Rayleigh fading – Nt=4, Nr=4

M=8 M=64M=8 M=64
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i.i.d. Rayleigh fading – Nt=2, Nr=2

M 8 M 16M=8 M=16
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i.i.d. Rayleigh fading – Nt=8, Nr=8

M 32 M 64M=32 M=64
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8bpcu – i.i.d. Rayleigh fading – Nr=4

GSM N 12 3GSM: Nt = 12, nt = 3
VGSM: Nt = 8, M = 2
SM: Nt = 128, M = 2t ,
SMX: Nt = 8, M = 2
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i.i.d. Rayleigh fading
6 bpcup
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Single-RF vs. Multi-RF (SM vs. Spatial-Multiplexing MIMO)

i.i.d. Rayleigh fading
8 bpcup
Nr=4
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Nt = 8
m = 2 5m = 2.5
Ω = 1
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Diversity Analysis of  Spatial Modulation

 The diversity order over Nakagami-m fading channels is:

 SM NakDiv min ,r rN m N

 If mNak > 1, DivSM = Nr, the ABEP is dominated by the spatial-
t ll ti di

 SM Nak,r r

constellation diagram

 If mNak < 1, DivSM = mNakNr, the ABEP is dominated by the signal-
constellation diagramconstellation diagram

 DivSIMO = mNakNr for every mNak

 The diversity order over Rician fading channels is:

Div NSMDiv rN
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 
SNR :  SNR gain of Y compated to XX Y
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 Receiver Diversity case: nt = 1, nr = n
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Channel State Information at the Transmitter (1/22)

 The performance of SSK/SM modulation significantly depends on the
wireless channel statistics, and power imbalance may improve the, p y p
performance

 Can power imbalance be created via opportunistic power allocation?

 Assumptions:
 Nt = 2

 C l t d R l i h f di h l Correlated Rayleigh fading channel

 E1 ≠ E2
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SSKSSK
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OOSSK
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Channel State Information at the Transmitter (5/22)

 The symbol error rate (SER) performance highly depends on the
Euclidean distance between pairs of these vectorsEuclidean distance between pairs of these vectors

 Optimization problem: how to design the transmit vectors using
CSIT such that the distance between pairs of constellation vectors at
the receiver is larger

 Two methods are proposed:
 In the first method, no constraint on the structure of the transmit,

vectors is imposed (Multi-Antenna Space Modulation: MSMod)

 In the second method, the transmit vectors have only one non-zero entry
(M difi d S Shift K i MSSK)(Modified Space Shift Keying: MSSK)
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MSMod with Full-CSIT
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MSMod with Full-CSIT: Optimal Solution

 v1 is the right singular vector related to the largest singular value of H

 ε is the largest singular value of H ε1 is the largest singular value of H

 λ’ is a constant

 Bottom line: θ can be chosen from conventional PSK/QAM constellations Bottom line: θk can be chosen from conventional PSK/QAM constellations

 Similar results apply to the imperfect CSIT case (Herror = H + N)
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MSSK with Full-CSIT
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MSSK with Full-CSIT: Optimal Solution

 Find

 Such that the following function is MINIMIZED:g
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MSSK with Full-CSIT: Optimal Solution

 If Nt = 2:

 with with
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MSSK with Full-CSIT: Optimal Solution

 If Nt > 2, a sub-optimal iterative
approach is proposed:
 In each iteration, the pair of

vectors with s-th minimum
distance is considered and the
optimal solution for Nt = 2 is
computed

 To guarantee that the error To guarantee that the error
performance does not increase
with the iterations, an error
function is introducedfunction is introduced

 Iteration over s: s-th minimum
di i fdistance over pairs of
transmission vectors
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The Approach

max
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The Proposed Adaptive Transmission Schemes

 AMS-SM: Adaptive Modulation Scheme Spatial Modulation

 ASM: Adaptive Spatial Modulation

 OH-SM: Optimal Hybrid Spatial Modulation

 C-SM: Concatenated Spatial Modulation
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Imperfect Channel State Information at the Receiver (1/23)

The working principle of SM/SSK is based on the following facts:
1. The wireless environment naturally modulates the transmitted signal

2. Each transmit-receive wireless link has a different channel

3. The receiver employs the a priori channel knowledge to detect the
transmitted signal

Th f h i f i i d b h Ch l I l4. Thus, part of the information is conveyed by the Channel Impulse
Response (CIR), i.e., the channel/spatial signature

H M h I iHow Much Important is 
Channel State Information for SSK/SM Modulation?

150150



Imperfect Channel State Information at the Receiver (2/23)

 Perfect CSI (channel gains and phases): F–CSI (SSK)

 
 ˆ arg max
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 

 Partial CSI (channel gains): P–CSI (SSK)
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation With Partial Channel State Information:
Optimal Detector and Performance Analysis Over Fading Channels”, IEEE Trans. Commun., Vol. 58, No.
11, pp. 3196-3210, Nov. 2010.



Imperfect Channel State Information at the Receiver (3/23)
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Imperfect Channel State Information at the Receiver (4/23)

2x1 MIMO, Correlated (ρ=0.64) Nakagami-m Fading

Scenario a: 
Ω1=1, Ω2=1, m1=2, m2=5

Scenario b: 
Ω1=10, Ω2=1, m1=2, m2=5Ω1 10, Ω2 1, m1 2, m2 5

Scenario c: 
Ω 10 Ω 1 5 2Ω1=10, Ω2=1, m1=5, m2=2
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation With Partial Channel State Information:
Optimal Detector and Performance Analysis Over Fading Channels”, IEEE Trans. Commun., Vol. 58, No.
11, pp. 3196-3210, Nov. 2010.



Imperfect Channel State Information at the Receiver (5/23)

4x1 MIMO, Correlated (exponential) Nakagami-m Fading

Balanced: 
{Ωi}i=1,…,4 = 1

Unbalanced: 
Ω1 = 1, {Ωi}i=2 4 = 4i-4Ω1  1, {Ωi}i=2,…,4  4i 4

Correlation: 
ρi,j =exp(-d0|i-j|)
d0 = 0.22
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation With Partial Channel State Information:
Optimal Detector and Performance Analysis Over Fading Channels”, IEEE Trans. Commun., Vol. 58, No.
11, pp. 3196-3210, Nov. 2010.



Imperfect Channel State Information at the Receiver (6/23)

2x1 MIMO, Uncorrelated Nakagami-m Fading

 P CSI……  P-CSI

____  F-CSI____
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation With Partial Channel State Information:
Optimal Detector and Performance Analysis Over Fading Channels”, IEEE Trans. Commun., Vol. 58, No.
11, pp. 3196-3210, Nov. 2010.



Imperfect Channel State Information at the Receiver (7/23)

4x1 MIMO, Correlated (exponential) Nakagami-m Fading

 P CSI……  P-CSI

____  F-CSI____
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation With Partial Channel State Information:
Optimal Detector and Performance Analysis Over Fading Channels”, IEEE Trans. Commun., Vol. 58, No.
11, pp. 3196-3210, Nov. 2010.



Imperfect Channel State Information at the Receiver (8/23)

SSK with Mismatched Decoder
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Channel Estimates”, IEEE Trans. Commun., Vol. 60, No. 4, pp. 998-1112, Apr. 2012.



Imperfect Channel State Information at the Receiver (9/23)

ABEP

  2

, , ,

rN

t q q r t r     α    , ,E exp
t q t qM s s  

Methodology for computation:

1r
 q

1. Union bound: the ABEP can be obtained from the APEP

            ˆ ˆ ˆ ˆAPEP E Pr Pr 0m m D m D m D m D m     

2. The (difference) decision variable is a quadratic-form in complex Gaussian RVs

            APEP E Pr Pr 0
q q q qq t m t m q m t m qm m D m D m D m D m    

(when conditioning upon fading channel statistics)

3. The PEP is obtained by using the Gil-Pelaez inversion theorem
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M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “Space Shift Keying (SSK-) MIMO with Practical
Channel Estimates”, IEEE Trans. Commun., Vol. 60, No. 4, pp. 998-1112, Apr. 2012.



Imperfect Channel State Information at the Receiver (10/23)

Time-Orthogonal Signal Design assisted SSK (TOSD-SSK)

0 no mod.
( )

AI-2 AI-1
Space

Shift Keying 1

w1(.)

AI-2 = 0

1
w2(.)

 If w1(t) = w2(t) Diversity = Nr (conventional SSK)

0

 If w1(t) is “time-orthogonal” to w2(t) Diversity = 2Nr (TOSD-SSK)

 This is true for any Nt with no bandwidth expansion and with a single active
transmit-antenna at any time-instance
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK–) MIMO over Correlated Rician Fading Channels:
Performance Analysis and a New Method for Transmit–Diversity”, IEEE Trans. Commun., vol. 59, no. 1, pp. 116-
129, Jan. 2011.



Imperfect Channel State Information at the Receiver (11/23)

TOSD-SSK with Mismatched Decoder
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Imperfect Channel State Information at the Receiver (12/23)
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Methodology for computation:
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1. Union bound: the ABEP can be obtained from the APEP
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2. The (difference) decision variable is the difference of two independent quadratic-
f i l G i RV ( h di i i f di h l i i )

            APEP E Pr Pr 0
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forms in complex Gaussian RVs (when conditioning upon fading channel statistics)

3. The PEP is obtained by using the Gil-Pelaez inversion theorem
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Channel Estimates”, IEEE Trans. Commun., Vol. 60, No. 4, pp. 998-1112, Apr. 2012.



Imperfect Channel State Information at the Receiver (13/23)

Diversity Analysis (i.i.d. Rayleigh Fading)

SSK

TOSD-SSK

With channel estimation errors:
1. Diversity order of SSK is: Nry

2. Diversity order of TOSD-SSK is: 2Nr

162162
M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “Space Shift Keying (SSK-) MIMO with Practical
Channel Estimates”, IEEE Trans. Commun., Vol. 60, No. 4, pp. 998-1112, Apr. 2012.



Imperfect Channel State Information at the Receiver (14/23)

Numerical Results (SSK)
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Imperfect Channel State Information at the Receiver (15/23)

Numerical Results (TOSD-SSK)
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Imperfect Channel State Information at the Receiver (16/23)

Single-Antenna MQAM
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Imperfect Channel State Information at the Receiver (17/23)

Alamouti MQAM
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Imperfect Channel State Information at the Receiver (18/23)

SSK vs. Single-Antenna MQAM (Nr=1 / Nr=2 / Nr=4)

Take Away Message:

167167

y g
• SSK is better than single-antenna MQAM if  Rate>2bpcu and Nr>1
• The robustness to channel estimation errors is the same



Imperfect Channel State Information at the Receiver (19/23)

TOSD-SSK vs. Alamouti MQAM (Nr=1 / Nr=2)

Take Away Message:

168168

• TOSD-SSK is better than Alamouti MQAM if  Rate>2bpcu
• TOSD-SSK  is more robust to channel estimation errors



Imperfect Channel State Information at the Receiver (20/23)

SM with Imperfect CSIR
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Imperfect Channel State Information at the Receiver (21/23)

N = 4Nr = 4
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Channel Estimation Errors”, IEEE Commun. Lett., vol. 16, no. 2, pp. 176-179, Feb. 2012.



Imperfect Channel State Information at the Receiver (22/23)

N = 4Nr = 4
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Imperfect Channel State Information at the Receiver (23/23)

N = 4Nr = 4
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Multiple Access Interference (1/22)

The working principle of SM/SSK is based on the following facts:g p p / g
1. The wireless environment naturally modulates the transmitted signal

2. Each transmit-receive wireless link has a different channel

3. The receiver employs the a priori channel knowledge to detect the transmitted
signal

4 Thus, part of the information is conveyed by the Channel Impulse Response4. Thus, part of the information is conveyed by the Channel Impulse Response
(CIR), i.e., the channel/spatial signature

Can the randomness of the fading channel be used forCan the randomness of  the fading channel be used for 
Multiple-Access too rather than just for Modulation?

174174



Multiple Access Interference (2/22)

Signal Model

Single User DetectorSingle-User Detector

Multi-User Detector

175175
M. Di Renzo and H. Haas, “Bit Error Probability of Space Shift Keying MIMO over Multiple-Access
Independent Fading Channels”, IEEE Trans. Veh. Technol., Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011.



Multiple Access Interference (3/22)
SSK with Single-User Detector (i.i.d. Rayleigh)
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 Eu = 0 (no interference): framework reduces to single-user case

 SNRξ >> 1 and INR\ξ << 1 (noise limited):
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Multiple Access Interference (4/22)
SSK with Single-User Detector (i.i.d. Rayleigh)

 INR\ξ >> 1 and SIR = SNRξ /INR\ξ >> 1 (interference limited):
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Multiple Access Interference (5/22)
SSK vs. MPSK/MQAM (Single-User Detector, i.i.d. Rayleigh)
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Q
    

 SSK will never be better than MPSK/MQAM if Q ≥ 2. This occurs if
M = Nt = 2 and M = Nt = 4. If M = Nt > 4 a crossing point exists

 If Q ≥ 2, the performance gain of SSK exponentially increases with
NNr
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Multiple Access Interference (6/22)
GSSK with Single-User Detector (i.i.d. Rayleigh)
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x y

\ ta2 1 INR N

 N is the number of active antennas Nta is the number of active antennas

 Nta
≠ is the number of different antenna indexes: 2 ≤ Nta

≠ ≤ 2Nta

 Asymptotic performance: Asymptotic performance:
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Multiple Access Interference (7/22)
SSK vs. GSSK (Single-User Detector, i.i.d. Rayleigh)

 GSSK
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x y 
 SSK
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

  
  x y

 Since 2 ≤ Nta
≠ ≤ 2Nta, GSSK is worse than SSK regardless of the

choice of the spatial-constellation diagramchoice of the spatial constellation diagram

 The SNR gap is:

 

th th l N th GSSK d t SSK

 10 ta0 10 log N  

thus, the larger Nta, the worse GSSK compared to SSK
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Multiple Access Interference (8/22)
SSK and GSSK with Multi-User Detector (i.i.d. Rayleigh)
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 Unlike the single-user detector, APEP → 0 if N0 → 0
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Multiple Access Interference (9/22)
SSK with Multi-User Detector (i.i.d. Rayleigh) – Asymptotic Analysis

 A SNR >> 1 AggSNR >> 1
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Multiple Access Interference (10/22)
SSK with Multi-User Detector (i.i.d. Rayleigh) – Asymptotic Analysis

 Strong interference case (Ewσw
2 << Euσu

2, for every u)
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Multiple Access Interference (11/22)
SSK with Multi-User Detector (i.i.d. Rayleigh) – Asymptotic Analysis

 Generic user
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Multiple Access Interference (12/22)
GSSK with Multi-User Detector (i.i.d. Rayleigh) – Asymptotic Analysis

ABEP SULB and ABEP weak interference case
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Multiple Access Interference (20/22)
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Multiple Access Interference (21/22)
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Multiple Access Interference (22/22)

3-user scenario
The ABEP of  each 
user is shownuser is shown
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Energy Efficiency (1/26)

 The EARTH power model is a very simple and elegant model that
relates the transmitted power of a BS to the total power consumedp p
 G. Auer et al., “Cellular Energy Evaluation Framework,” IEEE VTC-Spring,

May 2011

 Psupply is the total power supplied to the BS

 NRF is the number of RF chains at the BS

P i h i RF h i h l i i P0 is the power consumption per RF chain at the least transmission power

 m is the slope of the load-depended power consumption

 P is the RF transmit-power per antenna Pt is the RF transmit-power per antenna

 Pmax is the maximum transmit-power per antenna
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Energy Efficiency (3/26)
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Energy Efficiency (8/26)

 The following energy-model is considered:
 S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-efficiency of MIMO and S. Cui, A. J. Goldsmith, and A. Bahai, Energy efficiency of MIMO and

cooperative MIMO techniques in sensor networks”, IEEE JSAC, vol. 22, no. 6,
pp. 1089−1098, Aug. 2004

 Eb is the bit energy Rb is the bit rate

 d is the transmission distance Ml is the link margin

 Gt and Gr are transmit and receive antenna gains

 N is the noise figure λ is the wavelength Nf is the noise figure λ is the wavelength

 η is the drain efficiency of the power amplifier

 ξ is the peak-to-average-power-ratio (PAPR)

K N i M Di R A P N i d C V ik ki “T d h P f d E

ξ p g p ( )

 Pcircuit = PDAC + Pmixer + Pfilters + PfreqSynt
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Energy Efficiency (9/26)

 The following energy-model is considered:
 Eb is the bit energy Rb is the bit rate Eb is the bit energy Rb is the bit rate

 d is the transmission distance Ml is the link margin

 Gt and Gr are transmit and receive antenna gains

 Nf is the noise figure λ is the wavelength

 η is the drain efficiency of the power amplifier

 ξ i h k i (PAPR) ξ is the peak-to-average-power-ratio (PAPR)

 Pcircuit = PDAC + Pmixer + Pfilters + PfreqSynt
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SM vs. Single-RF QAM – 4 bpcu
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SM vs. Single-RF QAM – 4 bpcu

K N i M Di R A P N i d C V ik ki “T d h P f d E

207207

K. Ntontin, M. Di Renzo, A. Perez-Neira, and C. Verikoukis, “Towards the Performance and Energy
Efficiency Comparison of Spatial Modulation with Conventional Single-Antenna Transmission over
Generalized Fading Channels”, IEEE CAMAD, Sep. 2012, Barcelona, Spain.



Energy Efficiency (12/26)

SM vs. Single-RF QAM – 4 bpcu
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SM vs. Single-RF QAM – 4 bpcu
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SM vs. Single-RF QAM – 4 bpcu
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Energy Efficiency (15/26)

 Energy efficiency is achieved by non-equiprobable signaling where
less power-consuming modulation symbols are used more frequentlyp g y q y
to transmit a given amount of information

 The energy efficient modulation design is formulated as a convex
optimization problem, where minimum achievable average symbol
power consumption is derived with rate, performance, and hardware
constraintsconstraints

 E Effi i t H i C d Aid d (EE HSSK) d l ti Energy-Efficient Hamming Code-Aided (EE-HSSK) modulation

211211
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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From GSSK …

 Limitations of GSSK: Limitations of GSSK:
 Transmission rate

 Selection of the spatial-constellation diagram Selection of the spatial constellation diagram

 System performance (dmin = 2)

212212
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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… to (EE)-HSSK

 In HSSK:
 The set of antenna

indices is fully utilizedindices is fully utilized

 It employs a different
number of 1’s in each
modulation symbol
based on the Hamming
code (in general, binarycode (in general, binary
linear block code)
construction technique

 Increased number of RF
chains

213213
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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Problem Formulation

 The objective of EE-HSSK modulation is to design an alphabet and
the symbol a priori probabilities so that minimum average symbol
power per transmission is achieved while the target transmission ratepower per transmission is achieved, while the target transmission rate
(spectral-efficiency constraint), the minimum Hamming distance
property (performance constraint), and the maximum required
number of RF chains (hardware constraint) are met

 Given a code C = {Ci} with the specified minimum distance property

 Given that each element in Ci requires i RF chains at the transmitter Given that each element in Ci requires i RF chains at the transmitter

 Given that each element in Ci consumes power equal to i

 Given that the maximum number of RF chains is restricted to i ≤ M

 Then…

214214
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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Problem Formulation

 … the design problem is mathematically formulated as:

The a priori probabilities
of all symbols in the
alphabet sum to one, and
Pi = 0 if i > M

The target informationg
rate of m bits is met, as
described by Shannon’s
entropy formulaentropy formula

215215
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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Optimal Solution

 The optimization problem has a linear objective function subject to
an affine equality and convex inequality constraints. Therefore, it is
convex with a globally optimal solution which can be found usingconvex with a globally optimal solution, which can be found using
the Lagrange multiplier method

 The optimal a priori transmission probabilities Pi associated to thep p p i
Lagrange multipliers λ1 and λ2 can be computed as follows:

216216
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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Optimal Solution

 Th l f β d i h i l i i b bili i f h l h b The value of β determines the optimal a priori probabilities for the alphabet:

 If β = 1, all codewords in C are included in the alphabet equiprobably to
achieve the highest information rate. The cost is to have the largestachieve the highest information rate. The cost is to have the largest
average symbol power consumption

 If β = 0+, only the least power-consuming codewords in C are included
in the alphabet equiprobably

 The solution provides the optimal symbol a priori probabilities. However, no The solution provides the optimal symbol a priori probabilities. However, no
information is given for accomplishing the bit mapping. Variable-length
coding is proposed for creating an efficient bit-string representation of
symbols with unequal a priori probabilities: Huffman codingsymbols with unequal a priori probabilities: Huffman coding

 The length of the bit strings is roughly reversely proportional to the
symbol power. Since longer bit strings appear less frequently in ay p g g pp q y
random input sequence, symbols more power-consuming are used less
frequently to achieve energy efficiency

217217
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.



Energy Efficiency (22/26)
Implementation

218218
R. Y. Chang, S.-J. Lin, and W.-H. Chung, "Energy Efficient Transmission over Space Shift Keying
Modulated MIMO Channels", IEEE Trans. Commun., vol. 60, no. 10, pp. 2950-2959, Oct. 2012.
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N 7Nt = 7
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Nt = 10
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N N 7Nt = Nr = 7

(Single RF-SIMO)
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Nt = Nr = 10
(Single RF-SIMO)

( Two-RF-MIMO)
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The Alamouti Scheme

S1
Orthogonal

Space Time Block

S1-S2*

S2 S1 Space-Time-Block
Coding S1* S2

S2

SE
P

A
S

SNR [dB]SNR [dB]
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Orthogonal Space-Time Block Codes (OSTBCs)

225225
V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block coding for wireless communications:
Performance results”, IEEE J. Sel. Areas Commun., vol. 17, no. 3, pp. 451–460, Mar. 1999.
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Opportunities and Challenges for SM

Alamouti
S1-S2*

Alamouti
STBC S2S1*0

S2 S1

1
AI

S1S2*

Alamouti
STBC

S1

S2

-S2*

S1* S2S1

 Opportunity: Transmit-diversity with rate greater than one

 Challenge: Transmit-diversity with rate greater than one and single-stream

226226

decoding complexity
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 Transmitted Signal:
 If m needs to be transmitted: TX is active and TX radiates no power If m1 needs to be transmitted: TX1 is active and TX2 radiates no power

 If m2 needs to be transmitted: TX1 and TX2 are both active
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 Transmitted Signal:
 If m needs to be transmitted: TX is active and TX radiates no power If m1 needs to be transmitted: TX1 is active and TX2 radiates no power

 If m2 needs to be transmitted: TX1 radiates no power and TX2 is active
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 Transmitted Signal (TOSD-SSK):
 If m needs to be transmitted: TX is active and TX radiates no power If m1 needs to be transmitted: TX1 is active and TX2 radiates no power

 If m2 needs to be transmitted: TX1 radiates no power and TX2 is active
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Sp

0 no mod.
w1(.)

AI-2 AI-1
Space

Shift Keying 1
w2(.)

AI-2 = 0

2( )

 If (t) = (t) Di ersit = 1 (con entional SSK) If w1(t) = w2(t) Diversity = 1 (conventional SSK)

 If w1(t) is “time-orthogonal” to w2(t) Diversity = 2 (TOSD-SSK)
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[1] Ch d Y[1] Chau and Yu

[3]-[5]: Mesleh et al.[ ] [ ]
and Jeganathan et al.

TOSD SM TiTOSD-SM: Time-
Orthogonal Signal
Design assisted SMg
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Generalization to Rician Fading, Nt > 2, and Nr > 1 

0 no mod.
w1( )

AI-2 AI-1
Space

Shift Keying 1

w1(.)

( )

AI-2 = 0

w2(.)

 If wi(t) = wj(t) Diversity = Nr (conventional SSK)j

 If wi(t) is “time-orthogonal” to wj(t) Diversity = 2Nr (TOSD-SSK)

 This is true for any Nt with no bandwidth expansion and with a single active
transmit-antenna at any time-instance
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK–) MIMO over Correlated Rician Fading Channels:
Performance Analysis and a New Method for Transmit–Diversity”, IEEE Trans. Commun., vol. 59, no. 1,
pp. 116-129, Jan. 2011.
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Orthogonal Waveforms Design with Bandwidth Constraint

M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “Space Shift Keying (SSK-) MIMO with Practical

237237

Channel Estimates”, IEEE Trans. Commun., Vol. 60, No. 4, pp. 998-1112, Apr. 2012.
J. A. Ney da Silva and M. L. R. de Campos, “Spectrally efficient UWB pulse shaping with application in
orthogonal PSM,” IEEE Trans. Commun., vol. 55, no. 2, pp. 313–322, Feb. 2007.
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 In summary:
 TOSD SSK achieves transmit diversity with just 1 active antenna at the TOSD-SSK achieves transmit-diversity with just 1 active antenna at the

transmitter

 However, TOSD-SSK achieves transmit-diversity only equal to 2  Full, y y q
transmit-diversity is possible only if Nt=2

 Furthermore, the data rate of SSK is only Rate=log2(Nt)  This is too
l f hi h d t t li tilow for high data rate applications

 Questions:
 Can we achieve a transmit-diversity gain greater than 2? Can we achieve a transmit-diversity gain greater than 2?

 At the same time, can we increase the rate?

 Given a pair (rate, diversity), how to design a SSK scheme achieving it? Given a pair (rate, diversity), how to design a SSK scheme achieving it?
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation: On the Transmit-
Diversity/Multiplexing Trade-Off ”, IEEE Int. Commun. Conf., June 2011.
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Increasing the Rate via GSSK

TX1
 Size of the spatial-constellation diagram

(NH>Nt)
N  

TX2

2log
2

t
a

N
N

HN
      

TX3

Na

 Rate = log2(NH) > log2(Nt)

TX
 Spatial-constellation diagram:

TX4

 Na=1 (i.e., SSK) D={1; 2; 3; 4; 5}

 Na=2 D={(1,2); (1,3); (1,4); (1,5); (2,3); (2,4); …}
TX5  Na=3 D={(1,2,3); (1,2,4); (1,2,5); (1,3,4); …}

Nt
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channels”, IEEE PIMRC, pp. 1-5, Sep. 2008.
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 Problem statement
 Let N be the transmit-antennas and N be the active transmit-antennas Let Nt be the transmit-antennas and Na be the active transmit-antennas

 Then, the largest possible size of the spatial-constellation diagram is:

2log tN    

 Objectives

2log
2 aN

HN
    

 Objectives
 Find the actual spatial constellation diagram of size Nh≤NH such that

transmit-diversity is Div

 Understand the role played by the TOSD principle for transmit-diversity

 Methodology
 We have computed the PEP (Pairwise Error Probability) of any pair of

i i h i l ll i di d h l d hpoints in the spatial-constellation diagram and have analyzed the
transmit-diversity order of each of them
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M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation: On the Transmit-
Diversity/Multiplexing Trade-Off ”, IEEE Int. Commun. Conf., June 2011.
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Main Result: Transmit-Diversity 1 and 2

 Result 1 (Div=1)
 The system achieves transmit-diversity Div=1 and rate R=log2(NH) if the

Nt transmit-antennas have the same shaping filter

 This scheme is called GSSK and reduces to SSK if N =1 This scheme is called GSSK and reduces to SSK if Na=1

 Result 2 (Div=2)
 The system achieves transmit diversity Div=2 and rate R=log (N ) if The system achieves transmit-diversity Div=2 and rate R=log2(NH) if

the Nt transmit-antennas have orthogonal shaping filters

 This scheme is called TOSD-GSSK and reduces to TOSD-SSK if Na=1a

247247
M. Di Renzo and H. Haas, “Space Shift Keying (SSK) Modulation: On the Transmit-
Diversity/Multiplexing Trade-Off ”, IEEE Int. Commun. Conf., June 2011.
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Main Result: Transmit-Diversity > 2

 Result 3 (Div>2)
 Let NH be the size of the partition of the set of Nt transmit-antennasH p t

such that Nt=NH ·Na  each subset of the partition has Na distinct
antenna-elements and the subsets are pairwise disjoint

 Then, the system achieves transmit-diversity Div=2·Na and rate
R=log2(NH ) if the N transmit-antennas have orthogonal shaping filtersR log2(NH ) if the Nt transmit antennas have orthogonal shaping filters

 This scheme is called TOSD-GSSK with mapping by pairwise disjoint
set partitioning (TOSD-GSSK-SP)

tradeoff
R log Div 2tN N

 
   2R log Div 2 a

a

N
N

   
 
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Nt=4, Na=2, R=1, Div=4

0
no mod.

w1(.)

AI-1 = 1
w2(.)

no mod.

AI-2 AI-1 TOSD-GSSK-SPAI 2 AI 1 TOSD GSSK SP

AI-2 = 0
1

no mod.
w3(.)

w4(.)
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 Five schemes are studied:
 SSK: Na=1, w0(.)=wi(.), Div=1

 GSSK: Na>1, w0(.)=wi(.), Div=1

 TOSD-SSK: Na=1, Nt orthogonal wi(.), Div=2

 TOSD-GSSK: Na>1, Nt orthogonal wi(.), Div=2

 TOSD-GSSK-SP: Na>1, Nt orthogonal wi(.), the spatial-
ll i di i i i f N Di 2 Nconstellation diagram is a partition of Nt, Div=2·Na
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 From SSK to SM

 Understanding the design challenges of transmit-diversity for SM Understanding the design challenges of transmit diversity for SM

 Generalizing the TOSD approach to SM (TOSD-SM)

 Interested in transmit-diversity equal to 2 (extension of Alamouti code)e es ed s d e s y equ o (e e s o o ou ode)

 Challenges (…let us start, e.g., from Alamouti…)

Alamouti
STBC

S1

S2

-S2*

S1*0

S2 S1

STBC S2S1*0

AI S2 S1

1
AI

S1-S2*

Alamouti
STBC S2S1*
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 Problem statement
 Let N be the transmit-antennas and N be the active transmit-antennas Let Nt be the transmit-antennas and Na be the active transmit-antennas

 Then, the largest possible size of the spatial-constellation diagram is:

log tN    2log
2

t
aN

HN
    

 Objective. Find the actual spatial constellation diagram of size Nh≤NH
such that:
 Transmit-diversity is 2 for N =2 Transmit diversity is 2 for Na 2

 Transmit-diversity can be achieved with single-stream decoding complexity

h d l Methodology
 We have computed the PEP (Pairwise Error Probability) of any pair of

(antenna index modulated symbol) and have analyzed transmit diversity(antenna-index, modulated-symbol) and have analyzed transmit-diversity
and single-stream decoding optimality of each of them
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Main Result: Same Shaping Filters at Tx

 Result 1 (receiver complexity)
 Whatever the spatial-constellation diagram is, if the shaping filters at the

ll h dd h SS f htransmitter are all the same, adding the SSK component on top of the
Alamouti code destroys its inherent orthogonality. So, no single-stream
decoder can be used and the receiver complexity is of the order ofp y
Nh·M

Na correlations

 Result 2 (transmit-diversity)
 If the shaping filters at the transmitter are all the same, transmit-

diversity equal to 2 can be guaranteed by partitioning the spatial-
constellation diagram into non-overlapping sets of antennas. However, ag pp g ,
multi-stream receiver is needed at the destination for ML-optimum
decoding
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Same Shaping Filters at Tx – Example

 From Result 1 and Result 2, it follows that this scheme achieves
transmit-diversity equal to 2 but multi-stream decoding is needed

S1-S2*

Alamouti
STBC S2S1*0

S2 S1

1
AI

1

Alamouti
STBC

S1-S2*

STBC S2S1*
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Main Result: Time-Orthogonal Shaping Filters at Tx

 Result 3 (receiver complexity)
 ML optimum low complexity single stream decoding can be guaranteed ML-optimum low-complexity single-stream decoding can be guaranteed

via an adequate choice of the (precoding) shaping filters at the
transmitter. In particular, some pairs of filters should have zero cross-

l i f icorrelation function

 R l 4 ( i di i ) Result 4 (transmit-diversity)
 ML-optimum low-complexity single-stream decoding with transmit-

diversity of 2 can be guaranteed via an adequate choice of both thediversity of 2 can be guaranteed via an adequate choice of both the
precoding shaping filters and the spatial-constellation diagram at the
transmitter. In particular, some pairs of filters must have zero cross-

rr l ti n f n ti n nd th p ti l n t ll ti n di r m h ld bcorrelation function, and the spatial-constellation diagram should be a
partition of the transmit-antenna array
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Time-Orthogonal Shaping Filters at Tx – Example

 From Result 3 and Result 4, it follows that this scheme achieves
transmit-diversity equal to 2 with single-stream decoding

S1-S2*

y q g g

( )
Alamouti

STBC

S1

S2

S2

S1*0

w1(.)

w ( )

S2 S1AI

w1(.)

1

Alamouti
S1-S2*

w2(.)

STBC S2S1*
w2(.)
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 Case studies
 W t t hi h hi t it di it l t 1 d d Worst-case setup, which achieves transmit-diversity equal to 1 and needs a

multi-stream decoder at the destination. It is obtained by using the same
shaping filters in all the antennas at the transmitter along with a spatial-

ll i di i h l i f i (SM STBC)constellation diagram with overlapping sets of points (SM-STBC)

 Best-case setup, which achieves transmit-diversity equal to 2 and needs a
single-stream decoder at the destination. This is obtained by using differentg y g
and time-orthogonal shaping filters at the transmitter along with a spatial-
constellation diagram composed by non-overlapping sets of points (TOSD-
SM-STBC))

 Baseline schemes
 SM

 Alamouti code (rate=1)

 H3 and H4 OSTBCs (rate=3/4)
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Example:Example:
- Nt = 4
- BPSK Alamouti
- R = 2 bpcu 
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The Golden Code
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Double Space-Time Transmit Diversity (DSTTD)

E N O i A G D b k d T M S h idl “Hi h i bl k d d h
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SM-CIOD: Transmit-Diversity with a Single-RF Chain
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SM-CIOD: Transmit-Diversity with a Single-RF Chain

- First channel use: antenna l is used
Second channel use: antenna (l+1) mod N is used- Second channel use: antenna (l+1) mod Nt is used
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SM-CIOD: Transmit-Diversity with a Single-RF Chain

- N + 1 antennasNt + 1 antennas
- Nt

2 CBS
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Phase Rotations
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Spatially-Modulated Space-Time-Coded MIMO (1/23)

 Nt transmit-antennas Nα active transmit-antennas

 Nr receive-antennas Ns time-slots
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ML-Optimum Single-Stream Decoding:
TM2–SMSTT–SetPart–OSF and TM2–SMSTT–SetPart–SWOSF
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ML-Optimum Single-Stream Decoding:
TM2–SMSTT–SetPart–OSF and TM2–SMSTT–SetPart–SWOSF

AlamoutiAlamouti

295295

M. Di Renzo and H. Haas, “On Transmit–Diversity for Spatial Modulation MIMO: Impact of Spatial–
Constellation Diagram and Shaping Filters at the Transmitter”, IEEE Trans. Veh. Technol., to appear.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6428727



Spatially-Modulated Space-Time-Coded MIMO (11/23)

296296

M. Di Renzo and H. Haas, “On Transmit–Diversity for Spatial Modulation MIMO: Impact of Spatial–
Constellation Diagram and Shaping Filters at the Transmitter”, IEEE Trans. Veh. Technol., to appear.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6428727



Spatially-Modulated Space-Time-Coded MIMO (12/23)

ML-Optimum Single-Stream Decoding:
TM2–SMSTT–SetPart–OSF and TM2–SMSTT–SetPart–SWOSF

E l OSTBC T kh H3Example: OSTBC Tarokh-H3
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Diversity Analysis (Nr = 1 – R = 4 bpcu)
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Diversity Analysis (Nr = 2 – R = 4 bpcu)
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Multi vs. Single-Stream Decoding (R = 4 bpcu)
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Nr = 1 
R = 4 bpcu
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Nr = 1 
R = 6 bpcu
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Nr = 2 
R = 6 bpcu
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Nr = 4 
R = 6 bpcu
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Nr = 1 
R = 8 bpcu
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Nr = 2
R = 8 bpcu
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Nr = 4 
R = 8 bpcu
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OSF-MIMO
Nr = 2 
R = 8 bpcu
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Relay-Aided SM (1/24)
Time-Slot 1

Time-Slot 2
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Multi-Hop Networks:
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bi
lit

y

 Advantages: better performance,

extended coverage…
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Relay-Aided SM (2/24)
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Cooperative Networks:

 Advantages: better performance, (macro) diversity…

 Disadvantages: additional resources (relays, time-slots, frequencies),
capacit red ction half d ple constraint

311311

capacity reduction, half-duplex constraint…



Relay-Aided SM (3/24)
Dual-Hop Spatial Modulation

Demodulate-and-Forward (DemF)

312312
N. Serafimovski., S. Sinanovic., M. Di Renzo, and H. Haas, “Dual–hop spatial modulation (Dh–SM)”,
IEEE Veh. Technol. Conf. – Spring, pp. 1–5, May 2011.



Relay-Aided SM (4/24)
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Relay-Aided SM (5/24)
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Relay-Aided SM (6/24)
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Relay-Aided SM (7/24)
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Relay-Aided SM (8/24)

317317



Relay-Aided SM (9/24)
Virtual SM-MIMO for the Uplink

 In TS-1, MS broadcasts its own info symbol
to a group of NR relays. Each symbol has
log2(NR) bits (QAM or PSK)

R1

log2(NR) bits (QAM or PSK)

 The relays decode the received symbol
without any coordination among them

MS BS

R2  Each relay is assigned an individual ID. If
the symbol received from MS coincides with
the ID then the relay is activated for

R3
the ID, then the relay is activated for
transmission

 Thus, the relays play the role of a distributed
R4

y p y
spatial constellation diagram

 The relay-activation process conveys
information

 Errors may occur and so multiple or no

Distributed 
spatial-constellation diagram

318318

 Errors may occur, and so multiple or no
relays may wake up



Relay-Aided SM (10/24)
Virtual SM-MIMO for the Uplink

Conventional
SSK DemodulatorSSK Demodulator

319319
S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed Space Shift Keying for the Uplink of
Relay-Aided Cellular Networks”, IEEE CAMAD, Sep. 2012.



Relay-Aided SM (11/24)
Optimal (Error-Aware) Demodulator

320320
S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed Space Shift Keying for the Uplink of
Relay-Aided Cellular Networks”, IEEE CAMAD, Sep. 2012.



Relay-Aided SM (12/24)
Optimal (Error-Aware) Demodulator

321321
S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed Space Shift Keying for the Uplink of
Relay-Aided Cellular Networks”, IEEE CAMAD, Sep. 2012.



Relay-Aided SM (13/24)
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Relay-Aided SM (14/24)
Spectral-Efficient Relaying

MS(MS)Rx R1(MS)BS R2(MS)BS R1(R1)BS R2(R2)BS
Repetition Relaying

MS(MS)Rx R1(MS)BS R2(MS)BS R1(R1)BS R2(R2)BS

MS(MS)Rx Rbest(MS)BS R1(R1)BS R2(R2)BS
Selective Relaying

MS(MS)Rx Rbest(MS)BS R1(R1)BS R2(R2)BS

MS(MS)Rx R1(MS R1)BS R2(MS R2)BS

Network Coding (NC) Based ‐ Phoenix

A new relaying protocol 
based on Spatial Modulation

(the Relays have data in their buffers )

MS(MS)Rx R1(MS,R1)BS R2(MS,R2)BS

MS(MS1)R R1(MS1)BS R1( MS2*)BS

DSTBC Relaying – Alamouti Based

MS BS
R1

R2

MS(MS1)Rx
MS(MS2)Rx

R1(MS1)BS
R2(MS2)BS

R1(‐MS2*)BS
R2(MS1*)BS

Spatial Modulation Based R2

MS(MSi)Rx
id=MS1

Rid(Rid)BS
Rnid is silent

id=MS2
Rid(Rid)BS
Rnid is silent

Spatial Modulation Based

…
323323

Rnid is silent Rnid is silent



Relay-Aided SM (15/24)
Distributed SM

324324
S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed Spatial Modulation for Relay
Networks”, IEEE VTC-Fall, Sep. 2013 (submitted).



Relay-Aided SM (16/24)
Optimal (Error-Aware) Demodulator

××

325325
S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “Distributed Spatial Modulation for Relay
Networks”, IEEE VTC-Fall, Sep. 2013 (submitted).



Relay-Aided SM (17/24)

Diversity order of  the source is 2
(analytically proved)

326326



Relay-Aided SM (18/24)

327327

SPM



Relay-Aided SM (19/24)
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Relay-Aided SM (20/24)
Decode-and-Forward (DF) Non-Orthogonal Relaying

Listening Phase

Relayed Information

329329

Y. Yang and S. Aissa, "Information-Guided Transmission in Decode-and-Forward Relaying Systems:
Spatial Exploitation and Throughput Enhancement", IEEE Trans. Wireless Commun., vol. 10, no. 7, pp.
2341-2351, July 2011.



Relay-Aided SM (21/24)
Decode-and-Forward (DF) Non-Orthogonal Relaying

Relaying Phase
- x = [xd, xc]: received from the source[ d, c]
- xd: spatial-constellation diagram
- xc: signal-constellation diagram

Non-Relayed Information

330330

Y. Yang and S. Aissa, "Information-Guided Transmission in Decode-and-Forward Relaying Systems:
Spatial Exploitation and Throughput Enhancement", IEEE Trans. Wireless Commun., vol. 10, no. 7, pp.
2341-2351, July 2011.



Relay-Aided SM (22/24)

Capacity complementary cumulative 
distribution function (CCDF) 
comparison among: p g
- The general IGT scheme       
(general IGT), 
- The specific IGT case with single-p g
relay selection (SR-IGT)
- The benchmark in [*] 
- (a) M = 2 relay nodes
- (b) M = 4 relay nodes

[*] K. Azarian, H. El Gamal, and P. 
Schniter, “On the achievable 
diversity-multiplexing tradeoff  in 
h lf d l i h l ”half-duplex cooperative channels,” 
IEEE Trans. Inf. Theory, vol. 51, no. 
12, pp. 4152–4172, Dec. 2005.

331331



Relay-Aided SM (23/24)
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Relay-Aided SM (24/24)
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SM in Heterogeneous Cellular Networks (1/21)

335335



SM in Heterogeneous Cellular Networks (2/21)
 Heterogeneous cellular systems are networks with different types of

cells providing different QoS requirements to the users, which coexist
and contend the wireless medium (macro, pico, femto, relays, DAEs,
cognitive radios, etc.)

 Th i f h ld b l d d/ l i d f Thus, interference should be properly managed and/or exploited for
reliable communications and energy efficiency

Overlaid multi-tier heterogeneous scenario

336336



SM in Heterogeneous Cellular Networks (3/21)

…what cellular will migrate to (Prof. Jeff  Andrews, UT Austin)… 

337337



SM in Heterogeneous Cellular Networks (4/21)
 Conventional approaches for the analysis and design of

(heterogeneous) cellular networks (abstraction models) are:
 The Wyner model

 The single-cell interfering model

 The regular hexagonal or square grid model

 However these abstraction models: However, these abstraction models:
 Are over-simplistic and/or inaccurate

 Require intensive numerical simulations and/or integrations Require intensive numerical simulations and/or integrations

 Provide information only for specific BSs deployments

 No closed-form solutions and/or insights/ g

J. G. Andrews, F. Baccelli, and R. K. Ganti, “A Tractable Approach to Coverage and Rate in Cellular
Networks”, IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
M. Di Renzo, C. Merola, A. Guidotti, F. Santucci, and G. E. Corazza, “Error Performance of Multi–
Antenna Receivers in a Poisson Field of Interferers – A Stochastic Geometry Approach”, IEEE Trans.
Commun., to appear.
M Di R A G id i d G E C “A R f D li k H C ll l

338338

M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average Rate of Downlink Heterogeneous Cellular
Networks over Generalized Fading Channels – A Stochastic Geometry Approach”, IEEE Trans. Commun.,
Nov. 2012 (accepted with minor revision).



SM in Heterogeneous Cellular Networks (5/21)

An Emerging (Tractable) Approach

 RANDOMRANDOM SPATIALSPATIAL MODELMODEL for Heterogeneous Cellular
Networks (HCNs):
 K-tier network with BS locations modeled as independent marked

Poisson Point Processes (PPPs)

 PPP model is surprisingly good for 1-tier as well (macro BSs):
lower bound to reality and trends still hold

 PPP makes even more sense for HCNs due to less regular BSs
placements for lower tiers (femto, etc.)

Stochastic Geometry Stochastic Geometry 
emerges as an effective tool for

analysis, design, and optimization

339339

y , g , p
of  HCNs
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How It Works (Downlink – 1-tier)

P b bil i l

340340

Probe mobile terminal

PPP-distributed macro base station
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How It Works (Downlink – 1-tier)

Useful link

P b bil i l

341341

Probe mobile terminal

PPP-distributed macro base station
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How It Works (Downlink – 1-tier)

U f l li kUseful link

P b bil i l

342342

Probe mobile terminal

PPP-distributed macro base station
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How It Works (Downlink – 1-tier)

Useful link

P b bil i l

343343

Probe mobile terminal

PPP-distributed macro base station
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How It Works (Downlink – 2-tier)

J. G. Andrews et al., “Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive
Downlink SINR Analysis”, IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–3495, Oct. 2012.
M Di R A G id tti d G E C “A R t f D li k H t C ll l

344344

M. Di Renzo, A. Guidotti, and G. E. Corazza, “Average Rate of Downlink Heterogeneous Cellular
Networks over Generalized Fading Channels – A Stochastic Geometry Approach”, IEEE Trans. Commun.,
Nov. 2012 (accepted with minor revision).



SM in Heterogeneous Cellular Networks (11/21)

Worldwide Base Station Locations Available via OpenCellID

Base station 
distribution
in Taipei City, 
Taiwan, shown
on Google Map. g p
Blue D’s are
the locations of  
base stationsbase stations

345345

C.–H. Lee, C.–Y. Shihet, and Y.–S. Chen, “Stochastic geometry based models for modeling cellular
networks in urban areas”, Springer Wireless Netw., 10 pages, Oct. 2012.
Open source project OpenCellID: http://www.opencellid.org/



SM in Heterogeneous Cellular Networks (12/21)

PPP better than (or same accuracy as) Hexagonal

East Asia

346346

C.–H. Lee, C.–Y. Shihet, and Y.–S. Chen, “Stochastic geometry based models for modeling cellular
networks in urban areas”, Springer Wireless Netw., 10 pages, Oct. 2012.
Open source project OpenCellID: http://www.opencellid.org/
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PPP better than (or same accuracy as) Hexagonal

South Asia

347347

C.–H. Lee, C.–Y. Shihet, and Y.–S. Chen, “Stochastic geometry based models for modeling cellular
networks in urban areas”, Springer Wireless Netw., 10 pages, Oct. 2012.
Open source project OpenCellID: http://www.opencellid.org/
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PPP better than (or same accuracy as) Hexagonal

Europe

348348

C.–H. Lee, C.–Y. Shihet, and Y.–S. Chen, “Stochastic geometry based models for modeling cellular
networks in urban areas”, Springer Wireless Netw., 10 pages, Oct. 2012.
Open source project OpenCellID: http://www.opencellid.org/
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PPP better than (or same accuracy as) Hexagonal

America

349349

C.–H. Lee, C.–Y. Shihet, and Y.–S. Chen, “Stochastic geometry based models for modeling cellular
networks in urban areas”, Springer Wireless Netw., 10 pages, Oct. 2012.
Open source project OpenCellID: http://www.opencellid.org/



SM in Heterogeneous Cellular Networks (16/21)

Preliminary Reference Scenario

Useful link (SM)

Interfering link 
(QAM/PSK/SSK/SM)

Probe mobile terminal

di ib d i f i l i ( f ) b i

350350

PPP-distributed interfering lower-tier (e.g., femto) base stations

Tagged macro base station at a fixed distance  cell association is neglected
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A Key Result from Stochastic Geometry and PPP Theory
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Equivalent AWGN Channel

     2 * * 1 2
0 0 0

D i i
Λ U 2Re N 2Re I IB G         Decision

Useful AWGNMetric AggregateSignal Interference

  


Equivalent AWGN
conditioning upon IB



STEP 1: The frameworks developed without interference can be 
applied by conditioning upon BI

STEP 2: The conditioning can be removed either numerically 
l ti ll ( f d)

352352

or analytically (preferred)
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The Bottom Line

 Closed-form results in STEP 1 can be obtained from:
 M. Di Renzo and H. Haas, “Bit Error Probability of Spatial Modulation (SM-)

MIMO over Generalized Fading Channels” IEEE Trans Veh Technol Vol 61MIMO over Generalized Fading Channels , IEEE Trans. Veh. Technol., Vol. 61,
No. 3, pp. 1124-1144, Mar. 2012.

       ABEP ABEP ABEP ABEPB B B B  

Th B i STEP 2 b d i ( f

       signal spatial jointABEP ABEP ABEP ABEPI I I IB B B B  

 The average over BI in STEP 2 can be computed using (e.g., for
Nakagami-m fading):
 M Di R C M l A G id tti F S t i d G E C “E M. Di Renzo, C. Merola, A. Guidotti, F. Santucci, and G. E. Corazza, “Error

Performance of Multi–Antenna Receivers in a Poisson Field of Interferers – A
Stochastic Geometry Approach”, IEEE Trans. Commun., to appear.

353353
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Preliminary Results (SSK, Nt = 2, λ = 10-3, ES = EI)

10010
Simulation
Model

10-1

10-2

A
B

E
P

The Union-Bound is not
very accurate for high-SNR

A better bound is needed
10-3 A better bound is needed

0 5 10 15 20 25 30 35 40 45 50
10-4

Es/N0 [dB]

 

354354
M. Di Renzo and H. Haas, “Stochastic Geometry Analysis of Spatial Modulation MIMO for
Heterogeneous Cellular Networks”, in progress.
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0

Preliminary Results (SSK, λ = 10-3, ES = EI)

100  
Simulation
Model

10-1 Nr = 1, 2, 4 Multi-antenna receivers
can only in part reduce the
impact of network

10-2

A
B

E
P

p
interference

The error-floor is almostA The error-floor is almost
the same  This is
different from the setup

i h fi d i f10-3 with fixed interferers

An interference-aware

0 5 10 15 20 25 30 35 40 45 50
10-4

Es/N0 [dB]

 

demodulator/precoder
would be helpful

355355
M. Di Renzo and H. Haas, “Stochastic Geometry Analysis of Spatial Modulation MIMO for
Heterogeneous Cellular Networks”, in progress.
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SM for Visible Light Communications (1/13)

357357



SM for Visible Light Communications (2/13)

358358



SM for Visible Light Communications (3/13)

359359



SM for Visible Light Communications (4/13)

360360
L. Hanzo, H. Haas, S. Imre, D. C. O'Brien, M. Rupp, L. Gyongyosi, "Wireless Myths, Realities, and
Futures: From 3G/4G to Optical and Quantum Wireless", Proc. of the IEEE, pp. 1853-1888, May 2012.



SM for Visible Light Communications (5/13)

361361
T. Fath, M. Di Renzo, and H. Haas, “On the Performance of Space Shift Keying for Optical Wireless
Communications,” IEEE Globecom - Workshop on Optical Wireless Communications, Dec. 2011.



SM for Visible Light Communications (6/13)
Optical Wireless Setup and Channel

Ф1/2 = 15°: Tx semi-angle
Ψ1/2 = 15°: Rx semi-angle/

A = 1cm2: receiver detector area

362362
T. Fath, M. Di Renzo, and H. Haas, “On the Performance of Space Shift Keying for Optical Wireless
Communications,” IEEE Globecom - Workshop on Optical Wireless Communications, Dec. 2011.



SM for Visible Light Communications (7/13)

Nt = 8, Rate = 5 bpcu

363363



SM for Visible Light Communications (8/13)

364364



SM for Visible Light Communications (9/13)

365365



SM for Visible Light Communications (10/13)

Nt = Nr = 4, Rate = 4 bpcu

366366
T. Fath and H. Haas, “Performance Comparison of MIMO Techniques for Optical Wireless
Communications in Indoor Environments,” IEEE Trans. Commun., to appear.



SM for Visible Light Communications (11/13)

Nt = Nr = 4, Rate = 8 bpcu

367367
T. Fath and H. Haas, “Performance Comparison of MIMO Techniques for Optical Wireless
Communications in Indoor Environments,” IEEE Trans. Commun., to appear.



SM for Visible Light Communications (12/13)

Nt = Nr = 4, Rate = 4, 8 bpcu, dTX = 0.7

368368
T. Fath and H. Haas, “Performance Comparison of MIMO Techniques for Optical Wireless
Communications in Indoor Environments,” IEEE Trans. Commun., to appear.



SM for Visible Light Communications (13/13)

369369

GSSK –VLC transmitter developed by the startup PureVLC
http://purevlc.com/
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Experimental Evaluation of  SM (1/31)

 Performance assessment via channel measurements
 Urban scenario (Bristol/UK) @ 2GHz carrier frequency Urban scenario (Bristol/UK) @ 2GHz carrier frequency

MIMO channel sounder Post-processing

 Testbed implementation (NI-PXIe-1075 @ Heriot-Watt Univ. / UK)
 Laboratory environment: 2x2 MIMO @ 2.3GHz carrier frequency

371371



Experimental Evaluation of  SM (2/31)
Channel Measurements

 MIMO channel measurements
are taken around the center ofare taken around the center of
Bristol city (UK), using a
MEDAV RUSK channel sounder

 Th i f 4×4 The setup consists of a 4×4
MIMO, with 20 MHz bandwidth
centered at 2 GHz

 The transmitter consists of a pair
of dual polarized (±45◦) Racal
Xp651772 antennas separated byp65 77 e s sep ed by
2m, positioned atop a building,
providing elevated coverage of
central business and commercialcentral business and commercial
districts of Bristol city

372372
A. Younis, W. Thompson, M. Di Renzo, C.-X. Wang, M. A. Beach, H. Haas, and P. M. Grant, "Performance
of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements", submitted.



Experimental Evaluation of  SM (3/31)
Channel Measurements

 At th r i r t diff r nt r i r At the receiver, two different receiver
devices are used, both equipped with
four antennas:

 A reference headset, which is based
on 4-dipoles mounted on a cycle
helmet, thus avoiding any, g y
shadowing by the user

 A laptop , which is equipped with 4
Printed Inverted F Antennas (PIFA)Printed Inverted F Antennas (PIFA)
fitted inside the back of the display
panel

373373
A. Younis, W. Thompson, M. Di Renzo, C.-X. Wang, M. A. Beach, H. Haas, and P. M. Grant, "Performance
of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements", submitted.



Experimental Evaluation of  SM (4/31)
Channel Measurements

 58 t l ti h d th it 58 measurement locations are chosen around the city

 At each location the user walked, holding the laptop in front of him
and the reference device on his head in a straight line roughly 6 mand the reference device on his head, in a straight line roughly 6 m
long, until 4096 channel snapshots were recorded

 A second measurement is then taken with the user walking a second A second measurement is then taken with the user walking a second
path perpendicular to the first

 As the measurement speed is significantly faster than the coherencep g y
time of the channel, the measurements are averaged in groups of
four to reduce measurement noise

 One set of measurement results with the laptop and reference device,
and a second set of only the reference device measurements taken at
the same locations but on different daysthe same locations, but on different days
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Experimental Evaluation of  SM (5/31)
Channel Measurements

 Thi id t t l f 348 diff t t t h This provides a total of 348 different measurement sets, each
containing 1024 snapshots of a 4×4 MIMO channel, with 128
frequency bins spanning the 20 MHz bandwidthq y p g

 As the simulations are carried out using flat fading channels, a single
frequency bin centered around 2 GHz, is chosen from each
measurement snapshot to create the narrowband channel

 Two MIMO test cases are investigated:
 “Small-scale” MIMO, which are the original 4x4 channel measurements

 “Large-scale” MIMO, where, by manipulating the original
measurements, larger virtual MIMO systems are created
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Experimental Evaluation of  SM (6/31)
Small-Scale MIMO

 F ll l MIMO l ti h h l t i d For small-scale MIMO, locations whose channel taps experienced
Rayleigh fading are used

 The chi squared goodness of fit test with a significance level of 1% The chi-squared goodness of fit test, with a significance level of 1%,
is used to identify Rayleigh fading channels

 20 out of the 348 measurement sets (each containing 1024 snapshots), 20 out of the 348 measurement sets (each containing 1024 snapshots),
fulfilled this requirement and are kept for further processing

 For each location the transmit and receive correlation matrices are
estimated, then the decay of the correlation, based on the antenna
indices, is fitted to an exponential decay model (γ is the correlation
decay coefficient):decay coefficient):
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Experimental Evaluation of  SM (7/31)
Small-Scale MIMO

 C l t d h l Correlated channels:
 Two measurement sets with the lowest mean square error between the

model and the actual correlation matrices are retained. Both of them aremodel and the actual correlation matrices are retained. Both of them are
from the laptop device

 The measured decay coefficients for the transmitter and receiver are 0.41
and 0.99 for the first channel and 0.36 and 0.75 for the second channel,
respectively

 Uncorrelated channels:
 The two measurement sets with the lowest average correlation The two measurement sets with the lowest average correlation

coefficient are kept

 One is from the laptop and the other from the reference devicep p
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Experimental Evaluation of  SM (8/31)
Large-Scale MIMO

 Th f ll i t i t d t t th l l The following post-processing steps are used to create the large-scale
channel measurements from the original channel measurements:

1) The original channels are reversed such that the mobile1) The original channels are reversed, such that the mobile
terminal becomes the transmitting device

2) One channel from each snapshot is kept to form a transmitter of2) One channel from each snapshot is kept to form a transmitter of
the virtual array. This results in a virtual array with 1024
elements

3) To reduce the correlation between adjacent channels, only 256
elements are kept using a down-sampling factor of 4

4) Only the locations passing the chi-squared goodness of fit test
for the Rayleigh fading distribution are kept
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Experimental Evaluation of  SM (9/31)
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Experimental Evaluation of  SM (10/31)
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Experimental Evaluation of  SM (11/31)
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Experimental Evaluation of  SM (12/31)
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Experimental Evaluation of  SM (13/31)
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Experimental Evaluation of  SM (14/31)
Indoor Testbed

 The binary data to be broadcast is first passed through the digital signal processing
algorithm at the transmitter (DSP-Tx)algorithm at the transmitter (DSP Tx)

 The processed data is then passed to the physical transmitter on the National Instruments
(NI)-PXIe chassis (PXIe-Tx)

 E h t it t (‘T 1’ d ‘T 2’) i th ti t d di t th SM i i l t Each transmit antenna (‘Tx1’ and ‘Tx2’) is then activated according to the SM principle at
a carrier frequency of 2.3 GHz

 The receiver then detects and processes the radio frequency (RF) signal in PXIe–Rx.
L l h i id di i l i l i l i h (DSP R ) h i i l

N S fi ki A Y i R M l h P Ch b M Di R C X W P M G M A B h

Lastly, the receive side digital signal processing algorithm (DSP–Rx) recovers the original
data stream
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Experimental Evaluation of  SM (15/31)
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Experimental Evaluation of  SM (16/31)
Antenna Spacing (Line-of-Sight Scenario)
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Experimental Evaluation of  SM (17/31)
Digital Signal Processing for Transmission (DSP–Tx)

 The binary data is first split into information segments of appropriate size

 The information data in each segment is then modulated using SM

 A il i l d f h l i i i h dd d l i h f A pilot signal used for channel estimation is then added, along with a frequency
offset estimation section

 In addition, zero-padding is performed which permits up-sampling of the data while
maintaining the same signal power. The up-sampling ratio is set to four and the up-
sampled data is then passed through a root raised cosine (RRC) finite impulse
response (FIR) filter with 40 taps and a roll-off factor of 0.75. A large roll-off factor
and a long tap-delay are necessary to ensure that the power is focused in a short
time, i.e., ensure that only a single RF chain is active

 The resulting vector is multiplied with a factor labelled ‘Tuning Signal Power’ tog p g g
obtain the desired transmit power for the information sequence

 Frames are created such that the frame length multiplied by the sampling rate is less
than the coherence time of the channel which is typically ~ 7 ms for a stationarythan the coherence time of the channel which is typically 7 ms for a stationary
indoor environment. This ensures that all channel estimations at the receiver are
valid for the frame duration
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Experimental Evaluation of  SM (18/31)
Digital Signal Processing for Transmission (DSP–Tx)

 A frame includes the frequency offset estimation sequence, the pilot and up-sampled
data sequences, as shown below:

- The I16 data format is used which isThe I16 data format is used, which is  
a signed 16 bit representation of  an 
integer number
Each frame has at most 26100 samples- Each frame has at most 26100 samples

 The ‘Data section’ is formed from a series of concatenated frames
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Experimental Evaluation of  SM (19/31)
Digital Signal Processing for Transmission (DSP–Tx)

 In particular, the differences between the amplitude of the ‘Pilot and Frequency
Offset’ estimation section and the amplitude of the ‘Information Data’ is clearly
observable in the figure below:g

Th h i i SNR i i- The synchronization, SNR estimation 
and data sections are shown

- There is approximately a 21.1 dB 
difference between the peak power in 
the synchronization section and the 
peak power in the SNR estimation p p
and data sections
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Experimental Evaluation of  SM (20/31)
Transmission Hardware (PXIe–Tx)

 NI-PXIe-1075 chassis having on-board an Intel-i7 processor operating at 1.8 GHz
with 4GB of RAM
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Experimental Evaluation of  SM (21/31)
Transmission Hardware (PXIe–Tx)

 NI PXIe 5450 I/Q Signal Generator NI-PXIe-5450 I/Q Signal Generator

 400 Mega samples (Ms)/s, 16-Bit I/Q Signal Generator

 Dual-channel, differential I/Q signal generation, Q g g

 512 MB of deep on-board memory

 16-bit resolution

 400 Ms/s sampling rate per channel

 ±0.15 dB flatness to 120 MHz with digital flatness correction

 140 dBc/Hz phase noise density 140 dBc/Hz phase noise density

 −160 dBm/Hz average noise density

 25 ps channel-to-channel skewp

 NI-PXIe-5652 RF Signal Generator

 −110 dBc/Hz phase noise at 1 GHz and 10 kHz offset typical −110 dBc/Hz phase noise at 1 GHz and 10 kHz offset typical

 500 kHz to 6.6 GHz frequency range

 Typically less than 2 ms frequency sweep tuning speed

391391
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 NI-PXIe-5611 intermediate frequency (IF) to carrier RF up-converter



Experimental Evaluation of  SM (22/31)
Transmission Hardware (PXIe–Tx)

 The NI-PXIe-5450 I/Q signal generator is fed with the transmit vector from the
binary file generated in Matlab by the encoding DSP–Tx algorithm

 In particular the NI-PXIe-5450 I/Q signal generator performs a linear mapping of In particular, the NI-PXIe-5450 I/Q signal generator performs a linear mapping of
the signed 16-bit range to the output power and polarization, i.e., peak voltage
amplitude is assigned to any value equal to 215 and a linear scale of the voltage
amplitude down to zeroamplitude down to zero

 The output from the NI-PXIe-5450 I/Q signal generator then goes to the NI-PXIe-
5652 RF signal generator which is connected to the NI-PXIe-5611 frequency
converterconverter

 The NI-PXIe-5611 outputs the analogue waveform corresponding to the binary data
at a carrier frequency of 2.3 GHz

 Each antenna at the transmitter and receiver contains two quarter-wave dipoles, and
one half–wave dipole placed in the middle. All three dipoles are vertically polarized

 Each antenna has a peak gain of 7 dBi in the azimuth plane with an Each antenna has a peak gain of 7 dBi in the azimuth plane, with an
omnidirectional radiation pattern. The 10 cm inter-antenna separation is sufficient to
guarantee very low, if any, spatial correlation when broadcasting at 2.3 GHz with a
2.2 m separation between the transmitter and receiver
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Experimental Evaluation of  SM (23/31)
Laboratory Setup
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Experimental Evaluation of  SM (24/31)
Receiver Hardware (PXIe–Rx)

 NI-PXIe-1075 chassis having on-board an Intel-i7 processor operating at 1.8 GHz
with 4GB of RAM
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Experimental Evaluation of  SM (25/31)
Receiver Hardware (PXIe–Rx)

 NI PXIe 5652 on board reference clock NI-PXIe-5652 on-board reference clock

 NI-PXIe-5622 16-Bit Digitizer (I16)

/ 150 Ms/s real-time sampling

 3 to 250 MHz band in direct path mode, or 50 MHz bandwidth centered at 187.5
MHz

 NI-PXIe-5601 RF down-converter

 The receiving antennas are the same as those used for transmission

 The NIPXIe-5601 RF down-converter is used to detect the analogue RF signal from
the antennasthe antennas

 The signal is then sent to the NI-PXIe-5622 IF digitizer, which applies its own
bandpass filter with a real flat bandwidth equal to 0.4×SampleRate. The sampling

t i th i t i 10 M / hi h lt i l fl t b d idth f 4 MHrate in the experiment is 10 Ms/s which results in a real flat bandwidth of 4 MHz

 The NI-PXIe-5622 digitizer is synchronized with the NI-PXIe-5652 on-board
reference clock and writes the received binary files
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 The recorded binary files are then processed according to ‘DSP–Rx’



Experimental Evaluation of  SM (26/31)
Digital Signal Processing for Reception (DSP–Rx)

 The binary files recorded by the NI PXIe 5622 digitizer on the PXIe Rx are The binary files recorded by the NI-PXIe-5622 digitizer on the PXIe–Rx are
converted to Matlab vectors

 In particular, a sample received vector detected by PXIe–Rx on Rx1 is as follows:
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Experimental Evaluation of  SM (27/31)
Digital Signal Processing for Reception (DSP–Rx)

 The Matlab vectors are then combined to form a received matrix

 The detector first finds the beginning of the transmitted sequence by using the
synchronization sequence (based on an autocorrelation algorithm)synchronization sequence (based on an autocorrelation algorithm)

 The SNR is then calculated using the ‘SNR section’

 After the SNR for that vector has been determined, each vector is decomposed into
its underlying frames

 Each frame is then down-sampled and passed through the RRC filter which
completes the matched-filteringp g

 The frequency offset estimation, timing recovery and correction of each frame
follows and are performed using state-of-the-art algorithms

Th il i l i h d f h l i i The pilot signal is then used for channel estimation

 The remaining data, along with the estimated channels, is finally used to recover an
estimated binary sequence (SM maximum-likelihood demodulation )y q ( )
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Experimental Evaluation of  SM (28/31)
Wireless Channel Characterization

CDFs of the channel
coefficients

Each is defined by ay
Rician distribution
with a unique K-
factorfactor

The markers denote
th tthe measurement
points while the lines
denote the best fit
approximation
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Experimental Evaluation of  SM (29/31)
The Wireline Test: RF Chain Mismatch
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Experimental Evaluation of  SM (30/31)
Results

 A stream of 105 information bits is sent per transmission to obtain the
experimental resultsp

 The information data is put in 50, 2000 bit, frames

 The channel is estimated at the beginning and at the end of every The channel is estimated at the beginning and at the end of every
frame resulting in 100 channel estimations per transmission

 The experiment is repeated 1000 times for every SNR pointp p y p
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Experimental Evaluation of  SM (31/31)
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The Road Ahead – Open Research Challenges/Opportunities

 Point-to-point SM-MIMO has been studied extensively and little
room for significant steps forwards can be expected However someroom for significant steps forwards can be expected. However, some
important aspects are still not completely understood:

 Transmit-diversity with single-RF base stationsy g

 Precoding and CSIT

 Application to the uplink (co-located antennas) Application to the uplink (co located antennas)

 etc…

 Multi-user SM-MIMO and understanding the potential of SM in
cellular networks have almost been neglected so far. Here major
research opportunities can be found:research opportunities can be found:

 Precoding for multi-user SM-MIMO

 A li ti f t h ti t d d t i th t Application of stochastic geometry and random matrix theory to
the analysis and the design of SM in HCNs

 (Low complexity) Interference aware SM MIMO

403403

 (Low-complexity) Interference-aware SM-MIMO

 etc…



The Road Ahead – Open Research Challenges/Opportunities

 Distributed SM-MIMO for uplink applications is still almost
unexplored:unexplored:

 Advantages and disadvantages against state-of-the-art relaying

 End to end achievable diversity is unknown End-to-end achievable diversity is unknown

 Error propagation and related low-complexity receiver design

 t etc…

 Energy efficiency assessment and optimization:gy y p

 The number of RF chains vs. the total number of antennas trade-
off is still unclear

 Fair performance assessment and optimization against state-of-
the-art

 Realistic/fair comparison with massive MIMO

 etc…

404404 Testbed/practical implementation and measurements…



Implementation Challenges of  SM-MIMO

 Antenna switching at the symbol time

 S i hi l h i i Switching loss characterization

 Reconfigurable single-RF antenna design to create unique channel
signaturessignatures

 Bandwidth efficient finite-duration pulse shaping

 L l t i l t ti d l t ti Large-scale antenna-array implementation and electromagnetic
compatibility assessment

 Multi carrier SM MIMO Multi-carrier SM-MIMO

 Efficient channel estimation with single-RF transmitters

 Sampling time and q antization errors if orthogonal shaping filters Sampling time and quantization errors if orthogonal shaping filters
are used

 etc etc…
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