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Our research

Fiber-optical Wireless Cooperative Vehicular
communication communication networks communication

Today’s tutorial has applications in all these areas
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Goals

At the end of this tutorial, you should be able to:

1. Recognize and formulate inference problems

2. Solveinference problems using factor graphs

3. Design algorithms for centralized and distributed processing

4. Describe the bigger picture

W Goaq
w\ J E 4
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Do-it-yourself problems

e Some problems will not be solved in the tutorial
e Problems are shown by

e Most solutions are at the end of the tutorial

i o

© Henk Wymeersch, 2007 - 2013 6



CHALMERS Chalmers University of Technology

Outline

e Applications
e Background and terminology
e Bayesian detection
e Tool 1: Bayesian graphical models
— Basics
— Recipe for Bayesian inference
— Practicalities
— A worked example: a digital receiver

e Tool 2: Belief consensus
— Basics
— Convergence

e Applications revisited
e Variational interpretation
e Summary and conclusions
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Applications

© Henk Wymeersch, 2007 - 2013 9
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Application 1: receiver design

e Data detection problem: recover b from y (optimally)
e Many variations: codes, mapping, channels, antennas, users

preamble payload

estimate of b

The receiver knows
A priori distribution p(b)
Probabilistic mapping fromb toy, p (y|b)
sequence b of K bits * Conversion from b to s(t)
* Channel (linear)
4 * Noise statistics

© Henk Wymeersch, 2007 - 2013 10
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Application 2: cooperative localization !
s - ;

e N mobile nodes (agents) with unknown positions x.(t),..., Xy(t)

M reference nodes (anchors) with known positions x,(t), xg(t), X(t), ...

Measurements z;(t) between x(t) and x,(t), where jis mobile or reference
Goals

For every mobile node to determine its own position, given all measurements up to now

LT |

6% DUANErea: -
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Application 3: network synchronization

Clock model:
Co(t) =t
Ci(t) =t +6;

0; ~ U(—00,+0)
Measurement model:

Tz'j = ((9@ — 93) + nij

Goal:

Synchronize all nodes to
master clock
Leng, Wu, TSP 2011
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Application 4: distributed beamforming

Goal: Assuming known CSI, design
beamforming vectors w; for every BS
to maximize average throughput.

%‘E

¢>
)

Sohn, Lee, Andrews, TCOM, 2011
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Application 5: wireless sensor network

i = fru(0) + np Pheno,Tenon (6)

Goal:

Jointly compute estimate of 6

© Henk Wymeersch, 2007 - 2013
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CHALMERS

Background information

16
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Bayesian inference

e Bayesian inference posterior of x
Unknown x, observation y, model 6 likelihood of ©
p(X, Y|9) — p(x|y, 9)p(y|9) likelihood of x given 6
prior of x
p(zkly,0) = Z p(x[y,0) marginal posterior of x,

not ry

Example: Nick is worried he is sick. He read in the
newspaper 0.1% of the people is his city have
contracted a deadly disease. He goes to the hospital
to get tested. The doctor tells him the test is 95%
reliable (i.e., it will give a correct result 95% of the
time). The test is applied to Nick and turns out to be
positive. With what probability does Nick have the
disease?

Rev. T. BAYES

© Henk Wymeersch, 2007 - 2013
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The deadly disease
* We need to compute p(Nick is sick|test is positive)
o Applying Bayes’ rule _ p(P[S) x p(S) ~ p(P|H) x p(H)
p(SIP) = p(H|P) =
op) PP »(P)
_ 095 x0.001 ~0.05 x 0.999
p(P) B p(P)
_0.0000% ~0.04995
e Sothat - p(P)
p(H|P) + p(S|P) 1 Thank you Bayes!
0.04995 + 0.00095 !
p(P)
0.0509 p(P)
- * What about high-
0.00095 dimensional problems?
P(SIP) 0.0509 e Complexity?
0.02 « Can we automate
P(H|P) 06004590995 inference?
0.98

© Henk Wymeersch, 2007 - 2013
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Graphical models

e Allow

— Bayesian inference in rigorous, efficient, yet almost automated way
— Modularity of problems and solutions
— Graphical view of algorithms

e Applications
— Every field that involves estimation/detecting something
— Examples: communications, computer vision, bioinformatics

e New view of
— Viterbi algorithm
- BCQJR algorithm
— Turbo decoder
— LDPCdecoder
- Kalman filter

— Particle filter da(z,y) <Z5b(-’13ay,z) bc(y, 2) ¢d(z)

© Henk Wymeersch, 2007 - 2013 19
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Graphical models: a biased history Py

<

)

Kschischang
Frey, Loeliger

v

Yedidia

Shannon Freeman
Weiss
Berrou & Glavieux
FG and SPA
trellis BP LDPC \

| | | | \ | Y | .

] ), ! ), ! [ ! ! -
Capacity LDPC Tanner graph turbo GBP
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Background material

e Papers

- “Factor graphs and the sum-product algorithm,” Kschischang, Frey, Loeliger, IEEE Transaction in Information
Theory, 2001

- “Constructing free energy approximations and generalized belief propagation algorithms,” Yedidia,
Freeman, Weiss, IEEE Transactions on Information Theory, 2005

— Martin J. Wainwright and Michael I. Jordan (2008) "Graphical Models, Exponential Families, and Variational
Inference", Foundations and Trends in Machine Learning: Vol. 1: No 1-2, pp 1-305.

e Books
— Probabilistic Graphical Models: Principles and Techniques, Koller and Friedman, MIT press, 2009
—  Graphical models for machine learning and digital communication, Frey, MIT press, 1998
— Information theory, inference and learning algorithms, MacKay, Cambridge University Press, 2003
— Wireless communication systems: advanced techniques for signal reception, Wang, Poor, Prentice Hall, 2003
— lIterative Receiver Design, Wymeersch, Cambridge University Press, 2007

Information Theory, Inference,
and Learning Algorithms

Iterative
Receiver Design
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Detection Theory

© Henk Wymeersch, 2007 - 2013 23
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Optimal detection

e Parameterto be estimatedb € B
— known prior pg(b)

e Observationy € ¥
— known pY|B(Y|b)

o Estimator/detector b*(y): Y8

— For every possible y, associate an estimate
— Designed to minimize a cost

e Example
- b & {1,+1}, pg(+1)=0.1, pg(-1)=0.9
- y=b+n,n~N,(0,1) = pyg(y|b) = N,(b,1)

J\WHY? |
!

| I =
T
!

v

|-1 o

+1 y
~~ ~ < ~ —
Say ((_1” Say U+1”

© Henk Wymeersch, 2007 - 2013 24
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Optimal detection

* For every possible y, find best b*(y)
e Whatis “best”?

Correct: b*(y)=b has cost C,= 0

Wrong: b*(y)=b has cost C, > C,

General: cost function c(b,b*(y)): Bx B—R
Minimize expected cost (why not max cost?)

Chalmers University of Technology

/)’, set

For a given cost function c(b,b*(y))

of possible y

Say ((bzﬂ

= Expected cost C

"Y, set of possible y

Say ((bZH Say “b1”

= Expected cost C’

© Henk Wymeersch, 2007 - 2013
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Optimal detection

o Expected cost for given detector b*(y)
C = Ep,y{cB,b*(Y))}

= ) pBy(b,y)c(b,b*(y))

b,y <Bayes’ Rule: p(a,b)=p(a)p(b]a)>

ZPY(Y) (ZPB|Y(b|Y)C(bab*(Y)))
y b

N -

c(y)

Minimize this w.r.t. b*(y)

© Henk Wymeersch, 2007 - 2013 26
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MAP detection

e Special case: cost 1 when incorrect decision, cost 0 otherwise

Cly) = ZPBlY(b|Y)C(b7b*(Y))
b
= Z PB|Y(b|Y)

b#b*(y)
= 1—pgy(b*(y)ly)

e Leads to the maximum a posteriori (MAP) rule

b*(y) = arg max pg|y (bly)

© Henk Wymeersch, 2007 - 2013 27
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MAP detection - example

o be&{1,+1}, pg(1)=p,, pa(-1)=1-p,
* y=b+n,n~N,(0,1) = py;(y|b) = N,(b,1)

b*(y) = argmaxppy(bly) Say
b = y+In(p,) > -y+In(1-p,)
= argmaxpy|p(y[b)ps(b) <y > 0.5 In((1-p,)/p,)
<y>Y
= argmaxn (py|5(y/b)ps (b))
ly — b|2 Note:
= argmax— + Inpg(b)| y=0whenp=0.5
b v>0 when p.<0.5
= arg mgmxyb +Inpp(b) Y<0 when p,>0.5
|
|
| | | >
| | y
-1 0 _ | +1
\ NG _
~ ~
Say “-1” ) Say “+1

© Henk Wymeersch, 2007 - 2013 28
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MAP detector is optimal

e MAP detectoris optimal in the following sense: among all detectors, the
MAP detector minimizes the probability of making an error

e Two variations
— Minimizing the error rate of the packet b (FER)

b*(y) = argmax pp|y (bly)

— Minimizing the error rate of the individual bits (BER)

b; = b Vk
L(y) = arg bkrélg)}fl}PBle( klY),

© Henk Wymeersch, 2007 - 2013 29
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Why two MAP detectors?

Problem
e Maximizing* over all b: complexity exponential in length of b

b*(y) = arg mgXPB|Y(b|Y)
Solution

¢ Minimize BER instead of FER

by = b Vk
k(Y) arg b:él{%)i}pB’“'Y( klY),

Problem
e Itishard to find p(b, | y)

Solution
e How to find p(b, | y) is one of the topics of this tutorial

e p(b.|y)is marginal of p(b|y)
e Factor graphs can help in computing marginals

© Henk Wymeersch, 2007 - 2013 fComputing p(b|y) (up to constant) for given y and b is easy
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How about continuous variables?

e Supposeb&e N
e Terminology: “detection” — “estimation”
e Different cost functions lead to different estimators

e MAP estimator (for 6—0)

(b, b* (3)) :{ (1) IIb—b;éeY)H <9

b*(y) = arg max pgjy (bly)

e MMSE estimator
c(b,b* (y)) = b —b* (y)|*

b* (y) = / b pa/y (bly)db

© Henk Wymeersch, 2007 - 2013 31
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Two examples

e Detection b g y
— Repetition code: b=[00], or b=[11], b a priori uniform : > 0
— Binary asymmetrical channel 9
- Wereceive y=[01] 9.
— Find MAP estimate of b 1 PR

e Estimation
— Coin with bias q, po(q) = U(1/2-3,1/2+3)
— Toss N times, observe y = sequence of heads and tails, with N, heads
— Find MAP estimate of g (prob of heads)

© Henk Wymeersch, 2007 - 2013 32
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Example: detection

e Repetition code: b=[00], or b=[11], b a priori uniform b a, y

e Binary asymmetrical channel o)

+ y=[o1] !

e Find MAP estimate of b % ,
b*([0,1]) = arg mgxp3|y(b|0, 1) tore

= argmaxpy|p(0,1/b)
= argmaxpy|p, s, (0,1]b,b)

= AaIgmaxpy,|p, (0[b)py, B, (1]0)
5(b)

=¢(0)=(1-q,)q, and ¢(1)=(1-q,)q,

Example:
 Suppose q,=0.01, q,=0.05, then ¢(0)=0.0099 and ¢(1)=0.0475
e Decide: “1”

© Henk Wymeersch, 2007 - 2013 33



CHALMERS Chalmers University of Technology

Example: estimation

e Coin with bias g, po(q) = U(1/2-5,1/2+0)
e Toss N times, observe y = sequence of heads and tails, with N,, heads
e Find MAP estimate of q (prob of heads)

* = arg max
7" (y) gqe[o,l]pmy(qu)

= argqlél[%ﬁ]me(ym)pQ(Q)

_ Nu(1 _ ,\(N—Nn)
= ar max 1
& q€(1/2—6,1/2+9] 1 ( Q)

= Nyl + (N — Ng) In(1 —
V8 3 g S l0) (N~ V) Inll — )
¢(q)

&(q)

Unique max at N,/N

© Henk Wymeersch, 2007 - 2013 34
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Outline

e Applications
e Background and terminology
e Bayesian detection
e Tool 1: Bayesian graphical models
— Basics
— Recipe for Bayesian inference
— Practicalities
— A worked example: a digital receiver

e Tool 2: Belief consensus
— Basics
— Convergence

e Applications revisited
e Variational interpretation

e Summary and conclusions
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Factor graphs and message passing

o
i

T —
.,‘:

-
-

e

IR

<l.L‘
(1}

i

A 1

SR TR

.-
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Motivation

< IEEE

e Three important problems
- MAP configuration
X = arg maxp(x]y)

— Marginal posteriors
pily) =) _p(xly)
~TI;

— Probability of y
p(y)

e Complexity exponential in dimension of x
e Complexity can be reduced by exploiting conditional independence
e Bayesian graphical models is a tool to do this systematically

© Henk Wymeersch, 2007 - 2013
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Example

e (Consider the following distribution over binary variables

4 4
p($17$27$3ax47Y) — Hp(x1> X Hp(yl‘x17m’b)
=1 =2

e Solve the three problems
X = arg max p(Xx,y)
X

I; = arg max max p(x,y)

X, ~T;
\ . J

V¥

g(x:)

plziy) = p(xy)

© Henk Wymeersch, 2007 - 2013 38
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Factor graphs: high level

e Factorization f(x1, 22,3, T4)

Chalmers University of Technology

fA (1) fB(x1,22) fo (21,23, 24) > 0

E f $1,$2,3§'3,ZE4)
X1 $2,$4
X3

¢ The sum-product algorithm
— Variable vertex to factor vertex

Xy —fo (21) = pra—x, (B1) X fifp—x, (21)

— Factor vertex to variable vertex

Hfc—Xi (z1) = Z fe(x1, x5, m4) ¥ HX3— fc (z3) X HX4—fc (24)

e Marginals T3,%4

gX3<x3) — :ufc—>X3(a:3)><:uX3—>fc(x3)

= ) fl:

T1,Tr2,T4

© Henk Wymeersch, 2007 - 2013
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Factor graphs: high level

e Messages are functions

]Zx Tif '

4 N
01X

0 A ANAANS

* Messages are often normalized and transformed (e.g., to LLR)

e When factor graph has cycles, SPA may fail

e Replacing “sum” with “max” yields max-marginals (MPA)

Z f(wy, 02,23, 24) 5 max f(z1, 22,73, 74)

L1,r2,T4
L1,T2,T4

© Henk Wymeersch, 2007 - 2013
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Factor graphs: high Ievel

§, b y

Repeat2 = BPSK

noise

p(bly) o< p(b)p(y|b)

— H p(bk)p(y2r—1|bk)P(Y2k k)
k=1

Optimal sequence detection: Q Q _____ Q
b = arg max p(b
g max p(bly)
Optimal bit-by-bit detection:

b, = b
k arggﬂgﬁp( kYy)

© Henk Wymeersch, 2007 - 2013 41
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What is a factor graph?

e Graphs
— Graph G=(V,E)
— Vertices, edges
— Bipartite graph

A) A Bipartite Graph B) A non—Bipartite Graph

e Factor graph

A non-unique graph that represents the factorization of a real-valued
function f(x)

© Henk Wymeersch, 2007 - 2013
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Factor graph: construction
e Factorization f(:Bl, x2,T3, CE4) = fA(Cvl)fB (a:l,asz)fc(:vl, xs3, LE4)

e Factor graph

fA X1 fc X4

EASYQ
HARD %V m

Xz fB X3 / | vf',

Construction
1. Vertex for every variable x; (labeled with X;)
2. Vertex for every factor f, (labeled with f,)
3. Edge between vertex x; and vertex f, when x; appears in f,

© Henk Wymeersch, 2007 - 2013 43
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Conventional vs normal FG

e Factorization f(:Bl, x2,T3, 5134) - fA(:cl)fB(:cl,asg)fC(azl, xs3, LE4)
e (Conventional style

Construction

fA X, fc X4 1. Vertex for every variable x;
(labeled with X))

2. Vertex for every factor f, (labeled
with f,)

3. Edge between vertex x; and

vertex f, when x. appearsin f
X, fB X3 k i aPP k

» Normalstyle Construction
X X X 1. Vertex for every factor f, (labeled with f,)
f 1,2 _ 1,1 f 4 2. An edge for every variable x; connecting the
A C factors in which it appears
3. Xx;appearsin 1 factor f.: half-edge connected to
vertex f,, label X.

X1,3 X3 4. X, appears in 2 factors f,,f: edge between f, and
f, label X;
fB 5. X; appears in M>2 factors: a vertex (label “="),
X, I {371,1 = X192 = 331’3} M edges (labeled X; ,,...,X; v), connected to the
M factors

Indicator function: 1 when argument is true, 0 otherwise

© Henk Wymeersch, 2007 - 2013 44
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Example

1. Draw the FG of the following distribution

4 4
p(xl,xg,ﬁlfg,ﬂle,}’) — Hp(xZ) X HP(YZ‘:Ijl?'CE’L)
1=1 1=2

2. Write down a function corresponding to the following FG

3. Canyou come up with a reasonable distribution?

© Henk Wymeersch, 2007 - 2013 45
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Message passing on factor graphs

e Messages are functions

MX1—fa (5131)

f

X, fe — X,

Hfc—Xa (554)

2 fB X3

 If X, is binary and X, ternary
/LX1—>fA(') — [:qu—>fA(_1) MX1—>fA(O) :uX1—>fA(+1)]

Pio—Xs() = re—x.(0) prre—x,(1)]

© Henk Wymeersch, 2007 - 2013 46
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Sum-product and max-product algorithms

e There are many ways to compute messages
— MAP configuration: max-product algorithm (MPA)
— Marginal distributions: sum-product algorithm (SPA)
— Normalization constant: sum-product algorithm

@ )

0 Sum—marginal of a function f(x) When f(x) = p(x,y)
Sum Then
ng Z f 9%, (z4) = p(24,y)
~{zk}
and

e Max-marginal of a function f(x)

max

9x,

(k) = max f(x)

© Henk Wymeersch, 2007 - 2013
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The sum-product algorithm (=belief propagation)

fa [— X fc — X

Xz fB X3

1. Message from variable to factor vertex
HXy—fa(@1) = Bp—x, (T1) X Hfo—x, (1)
2. Message from factor to variable vertex

,ufc—>X4(374) — Z fc($1,553,ZU4),£LX1—>fc(fIJ1)MX3—>fC(ZU3)

3. Sum-marginal *1,%s

gﬁ}lfn(xl) =~ Hfa—X, (xl) X HUX—fa (5131)

9%, (T4) = ppo—sx, (1) X pix, - fo (24)

Initialization: Messages are initialized from leaves. Outgoing message only computed when
incoming messages are available. Alternative: always transmit messages.

© Henk Wymeersch, 2007 - 2013 48
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The max-product algorithm

fa [— X fc — X

2 fB X3

1. Message from variable to factor vertex
HXy—fa(@1) = Bp—x, (T1) X Hfo—x, (1)
2. Message from factor to variable vertex

Hfc—Xy (334) — mnax fC(wlv L3, $4)NX1—>]CC (xl)/'LXgﬁfc ($3)

L1,T3
3.  Max-marginal
g§?x($1) = Hfa—X4 (5[71) XUX1—fa ($1)

max

Ix. (1) = pro—x,(T4) X px,— 5o (24)

Initialization: Messages are initialized from leaves. Outgoing message only computed when
incoming messages are available. Alternative: always transmit messages.

© Henk Wymeersch, 2007 - 2013 49
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The sum-product algorithm

° f(x1»xz’x3’x4)= fA(X1)fB(X1’erX3)fC(X3rX4)
— Assume all variables are defined over the set {0,1}
— Functions can be represented as a vector of size 2: [u(0),u(1)]

fA X1 fc X4
Xz fB X3
3 phases
1. Initialization
2. Message computation Popu—x: (Ti) = Z fk(wl""’xD)H'u’Xj_’fk ()
3.Termination ~{xzi} j#i

© Henk Wymeersch, 2007 - 2013 50
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Phase 1: initialization

e Messages start from the edge of the graph
— Variable vertices of degree 1 send the message “1” over the domain: m=[1,1]
— Factor vertices of degree 1 (say f,(x;)) send message: m=[f,(0),f (1)]

— 1, 1]
[£4(0), fa(1)] ‘[1 1]
Xz  ——— fB X3
[1,1]
3 phases
1. Initialization b x, () = Z fk(a;l,...,xp)H/in—»fk (z;)
~{z;} JF#i
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Phase 2: message computation

e Compute outgoing message when all other incoming messages are available

fA X1 — fC R X4 MfB—>X1($1) - i 201 fB($1,$2)MX2_>fB(5C2)
_’ 1,1] el
74(0), £a(1) I Ll ,
A X,
[1,1]
Hrosxi (1) = Y folwnws, wa)xy o o (23)x, - fo (1)
363,3:46{0,1}
— Z f0($1,$3,$4)
x3,x4€{0,1}
3 phases

2. Message computation
~{zi} jF#i
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Phase 2: message computation

e Compute outgoing message when all other incoming messages are available

—

fA 1 —_— fC — X4
- [1,1]
oo .
Xz — fB X3
[1,1]
IXy—fo (Z1) = pa—xy (1) fp—x, (T1)
HX1—fB (.731) = Hfa—Xy (xl)ﬂfc—hxl (331)
3 phases
2.Message computation Himxi (i) = ;} (fk(wl’”"xD)l;[“Xj_’f’“ (:c]))
~{T; J7t
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Phase 2: message computation

e Compute outgoing message when all other incoming messages are available

—_— —— —_—
fA 1 — fC — X4

- [1,1]

ool [

G
Xz —»fB X3

[1,1]
Pioosxs(@s) = Y fo(@1, o3, 2)0x, - fo (T1) X, fo (24)
x1,x4€{0,1}

3 phases

2. Message computation
~{zi} jF#i
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Phase 3: termination

e Compute outgoing message when all other incoming messages are available

[ — —— —_—
fA X1 —|—;—> fC C— X4
[
C——
Xz —— fB X3

1Xy— fo (T fo—x, (T1) = Z f(z1, 2, 3, 24)

T2,T3,T4

HX1—fa (xl):qu—*Xl (Z‘1>

3 phases

9x,(Ti) = pg—x; (i) X px,—f, ()

3.Termination
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Example
4

4

¢ ConSider p($1,$2,$3,$4,}’) — Hp(xl) X Hp(Y’L’ajlaxz)
i=1 '\ i=2 TN

e Write down the sum-product rules gi(z;)

e Verify the solution

&1

X, f, X, f, X,
f3

&>
X3 g3
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Sum-product and max-product algorithm

Sum-product algorithm
— Aim: compute (sum-) marginals Z f

— Method: distributive law for real numbers ~{z;}

a(b+c) = ab+ ac

Max-product algorithm
— Aim: compute max-marginals gXx, (—Cl?z) = H%aX} f( )
~{x
- Method: distributive law for non-negative real numbers
amax(b, c) = max(ab, ac);a,b,c >0

Log-domain versions (see later)
- Max*-sum
-  Max-sum

Generalization: any suitable (F,®,®)
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Sum-product and max-product algorithm

e Message passing rules
— Replace all sums in SPA by max
— Outcome is max-marginals

e Usage
— assume f(x) has global maximum: f(x*)
— Concatenation of modes of max-marginals = x*
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Aside: opening of vertices

* Given avertex f(A,B,C) in a larger factor graph of a joint distribution p(A,B,C,...|Y=y)
e We canreplace f(A,B,C) with a factorization g(A,B,(,X,,X,) where
X, X, do not appear elsewhere

— Summing out X, and X, yields again f(A,B,C)

— Internal factor graphis a tree
e Qutcome of [S/M]PA is not affected:

— Messages over A, B and C are still the same

- Marginals are still the same
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Factor graphs with cycles

e Problem: When the factor graph has cycles: [S/M]PA gets stuck
o Solution: add artificial messages (e.g., set to “17)

e New Problem 1: XPA keeps running forever

e Solution: stop XPA after some time, and compute marginals

e New Problem 2: XPA becomes very unstable; messages tend to very small or very
large values; marginals are generally completely incorrect

e Conclusion: don’t use XPA for factor graphs with cycles!

X, f, X, f, X,
f
3 g4
&>
X3 g3
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Outline

e Applications
e Background and terminology
e Bayesian detection
e Tool 1: Bayesian graphical models
— Basics
— Recipe for Bayesian inference
— Practicalities
— A worked example: a digital receiver

e Tool 2: Belief consensus
— Basics
— Convergence

e Applications revisited
e Variational interpretation
e Summary and conclusions
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Inference using factor graphs
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Inference using factor graphs

e Statistical inference

—  Parameter of interest x, a priori py(x)

- Observation y, probabilistic mapping pyj(y|x)

- Model M, encapsulating any additional assumptions

- X,y can be discrete, continuous, hybrid
e 5 problems of interest
Likelihood of the model p (Y =y |M)
Marginal a posteriori distributions (MAPD) D (Xk Y =y, M )
Certain characteristics of the MAPD (e.g., mean, mode)
A posteriori distribution (APD) p (X |[Y =y, M)
Certain characteristics of the APD (e.g., mean, mode)

i nNyo-s
< X <<
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Running example

e Repetition code: b=[00], or b=[11], b a priori uniform E q y
e Binary asymmetrical channel o 1 v 0
+ y=[o1] !
e Find 9

~ MAP estimate of b (mode of MAPD pyy(x]y)) Vg, ]

— likelihood of receiving y (py(y), M=[q,,9,])
e Factorization Py (b,y) = py|5(¥|b)pB(b)

= pv,1B(Y1|0)Pys B (Y2|0)pB (D)
e Factor graphs
pp(B ps(B
/B\ / = \
Py, 8(y1 = 0|B) |py,5(y2 = 1|B Py, 18(Y1 = 0[B) |y, 5(y2 = 1|B)
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Problem 1 - likelihood of the model

Recipe

1. Factorize the joint distribution py y(x,y)= pY|X(y|x)pX(x) (add variables if necessary)

2. Create afactor graph of this factorization (y is given, it is a parameter, not a variable!)
3. Perform the SPA, this yields marginals py, y(X,,¥)

4. fTake any k, sum over x,, this gives p(y)

P,y (b=0, y=[0,1]) = 0.5 q,(1-q,)
pB,Y(b=17 y=[071]) =0.5 qz(1'q2)

pY(y:[0)1]) = 0'5(q1(1—q1)+(1—q2)q2)

ps(B)
[12,11] ,I;, [q.(ra)(ra)a,] 5 ,
cv‘l 1-q,
B 0 O
[1'q1’q% \ 1G] Recall: i
* p(alb) o< p(a,b) y ,
Py, |51 = 01B) pvaip(y2 =11B)  + p(a)=Z,p(a,b) "

© Henk Wymeersch, 2007 - 2013 t3_pag(a,b)=ps(b)
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Problems 2,3 - marginal a posteriori distributions

Recipe

1. Factorize the joint distribution py y(x,y)= pyx(y|X)Px(x) (add variables if necessary)

2. Create afactor graph of this factorization (y is given, it is a parameter, not a variable!)
3. Perform the SPA, this yields marginals py, y(X,,¥)

4. For the MAPD of X, normalizing py y(X,Y) gives pyiy(Xly)

pB,Y (b=0, y=[0r1]) = 0'5 q1(1'q1)
Psy(b=1, y=[0,1]) = 0.5 g,(1-q,)

pgy (0|[0,1])= q,(1-q,) /(q,(1-g,)+(1-q,)q,)

pr(B) Pey (1[0,1])= g,(1-q,) /(q,(1-q,)+(1-q,)q,)
(/2.1/2] ,I;, [a,(1-9,),(-0)a] o ,
c\r" 1-q,
B 0 > 0
[mm% \ v1 G Recall: -
* p(alb) o< p(a,b) y ,
Py 151 = 01B) proip(2 =1IB) -+ p(a)=Z,p(ab) ' e
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Problem 5 — mode of the a posteriori distribution

Recipe
1. Factorize the joint distribution py y(x,y)= py|x(y|x)px(x) (add variables if necessary)

2. Create afactor graph of this factorization (y is given, it is a parameter, not a variable!)
3. Perform the MPA, this yields max-marginals q,(x,)

4. The the mode of the max-marginals and concatenate

ps(B)
[12,11] ,I;, [q.(ra)(ra)a,] 5 ,
c"—' [ bl > 0
B
[1-q1,qy' q,
d,
q(b=0) =0.5q,(1-q,) A

Pri 54 = 0B a(b=1)= 05 a,(19, TR
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Inference recipe

factorize | | draw(tree)
FG
run SPA or sum- normalize
—> ) —>
MPA marginals
i,MPA i,
max- determine
marginals normalization
‘ll constant
concatenate
modes
— !
% = arg max p(x|y) p(y) p(xily) =) p(xly)
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Factor Graphs and Inference: Examples

(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...

i e S T

i

HOHO HOHO HOHO HOHO HOHO
APRTIORIUS PRAGHATICUS FREQUEHTISTUS SAPIERS BAYESTIANIS

© Henk Wymeersch, 2007 - 2013 Image: Mike West, Duke University
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The deadly disease - revisited

e Problem

Nick is worried he is sick. He read in the newspaper 0.1% of the people is his city have contracted
a deadly disease. He goes to the hospital to get tested. The doctor tells him the test is 95%
reliable (i.e., it will give a correct result 95% of the time). The test is applied to Nick and turns out
to be positive. With what probability does Nick have the disease?

e Factor graph
— Observation: “test is positive” = “T=p”
— Unknown: “Nick’s health” = “N” € {h,s}
— Determine p(N|T=p) = p(N,T=p)/P(T=p)
— Draw factor graph of p(N, T=p), perform SPA

p(N=s,T=p) = 0.95x0.001
P(N) p(N=hT=p) = 0.05x0.999
0.001,0. N=hT=p) =
l [ 999]  n( T = p) ST =)
N _ p(N =h,T = p)
N="hT=p)+p(N=sT=
[0.95,0.05] T \L [0.001,0.999] _ g_(98 P)+p(N =s P)

p(T=p | N)
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The deadly disease -- variations

e Variation1
- Quality of test; Q € {Good,Bad}
e Variation 2
- Nick and Jane both get tested, result is positive
e Independently OR
e From the same test (e.g., same bad/good batch)

P(N) P(J) P(N) P(J)

~ %
N J N J e
AS é\k('\\

J ﬂ) p(T=p | N,Q) p(T=p | J,Q) p(T=p | N,J,Q) ;:\

P(Q) P(Q) P(Q)
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Example: The burglar alarm problem

e Setup
- Aneighbor calls you at work, saying your burglar alarm is ringing
— You know this could be due to either a burglar or an earthquake
— Burglar and earthquake are a priori equally likely (probability 1/100)
e The following can trigger alarm, with the associate probabilities:
- neither burglar nor earthquake = 1/1000
- Earthquake, but no burglar = 1/10
— Burglar, but no earthquake =1/7
- Both burglar and earthquake = 9/10
e Questions
- What s the likelihood of the alarm ringing?
— What is the APD of a burglary happening
- What is the APD of an earthquake happening?

p(B) B P(A=1|B,E) E P(E)

P(B) P(A=1|B,E) P(E)
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Example: The l\/lonty Hall Problem

Problem
— Behind one door is a prize. Pick a door (say, door 1).
— Host reveals one other door (say, door 2), showing a

chicken.
~~~~~~~~~ — Should you switch to door 3?
P(D) b POID) | Factor graph solution
134/ /> < 6 | ~  Unknown: door holding the prize: D € {1,2,3}
[1/3,1/3,1/3] [1 ’0?1 3] — Observation: C\I:féite,g\j Fake F = 2: y=[C=1,F=2]
p(D=1]C=1,F=2)=C * 1/6 p(C=1,F=2|D=1)=p(F=2|D=1,C=1)p(C=1|D=1)=1/2*1/3
p(D=2|C=1,F=2)=C * 0 p(C=1,F=2|D=2)=p(F=2|D=2,C=1)p(C=1|D=2)=0%*1/3
p(D=3]C=1,F=2)=C * 13 p(C=1,F=2|D=3)=p(F=2|D=3,C=1)p(C=1|D=3)=1*1/3
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Outline

e Applications
e Background and terminology
e Bayesian detection
e Tool 1: Bayesian graphical models
— Basics
— Recipe for Bayesian inference
— Practicalities
— A worked example: a digital receiver

e Tool 2: Belief consensus
— Basics
— Convergence

e Applications revisited
e Variational interpretation
e Summary and conclusions
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Practicalities
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Messages and their representations

e Ininference problems
— Initialization: messages are likelihoods or pmfs
— SPA: multiplication and addition of messages
e Numerical stability issue
— Messages get smaller and smaller in magnitude
e Several approaches to solve this
— Normalization
- Log-domain processing

Very small in
magnitude

ps(B) - — ~
pgy (0|[0,1])= q,(1-q,) /(q,(1-g,)+(1-q,)q,)

-

[1/2,1/2] A I; » [9:(1-9,),(1-9,)q,] pgy (11[0,1])= q,(1-q,) /(q,(1-9,)+(1-9,)q,)

y

B
“'qvqy' \ ]

pY1|B(yl :O|B 2|B yg—llB
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Messages representations

e Normalization
- M =[a; b] becomes [a/(a+b); b/(a+b)] with normalization constant (NC) 1/(a+b)
— Does not affect outcome of SPA (as long as we keep track of NCs)
— Forgetting NCs does not affect marginal posteriors
— Forgetting NCs affects likelihood of model

e Log-domain
— M =[a; b] becomes [log(a) log(b)]
— Efficient computation rules (“max-star”)

e Normalization + log-domain
— M-=[a; b] becomes [log(a/b)]
— Log-likelihood ratio (LLR)
— Popular for binary variables
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Example: normalization

1 2 3 __'."\f
e Problem
— Behind one door is a prize. Pick a door (say, door 1).

p(D) D
H H
[1/3,1/3,1/3] [1/3,0,2/3]

p(y|D) | .

p(D=1|C=1,F=2)=C * 1/6
p(D=2|C=1,F=2)=C* 0
p(D=3|C=1,F=2)=C * 1/3

SWITCH!!!

p(D=1|C=1,F=2)=C *1/3
p(D=2|C=1,F=2)=C* 0
p(D=3|C=1,F=2)=C * 2/3

SWITCH!!!

© Henk Wymeersch, 2007 - 2013

Host reveals one other door (say, door 2), showing a
chicken.

Should you switch to door 3?

Factor graph solution

Unknown: door holding the prize: D € {1,2,3}
Observation: Choice C =1, Fake F = 2: y=[C=1,F=2]
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Example: normalization

e Dividing all elements of the message with a constant, such that
sum=1
— Messages can be interpreted as distributions

— Example: m=[0.001,0.02] = normalized = [0.0476,0.9524]

— Normalization constant 0.021: m’ =[0.0476,0.9524;0.021]

Without normalization:
Py (0][0,1])= 0.0099 /(0.0099+0.0475)=0.17

pey (1[0,1])= 0.0475 /(0.0099+0.0475)=0.83 \
py([0,1])= 0.0099+0.0475=0.0575

AP~
[0.17,0.83;0.0575]

B pB (5B
pe(B) 2
[0.5,0.5] |- &, [0.0099,0.0475] [005,0.5]‘, I:, [0.0099,0.0476;0.998]
[0.99 o?/ 2 \E’ 01,0.95] [0-9519,0.0481;1.0V B Q104,0.9896;0.96]
py,|5(y1 = 0|B) |pv,5(y2 = 1|B Py, B(Y1 = 0|B) |pyv,5(y2 = 1|B
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Example: normalization

e Forgetting normalization constant is OK

Without normalization:

Py (0][0,1])= 0.0099 /(0.0099+0.0475)=0.17
Peyy (1/[0,1])= 0.0475 /(0.0099+0.0475)=0.83

py([0,1])= 0.0099+0.0475=0.0575 222
ps(B) pp (B
[O'S’O'S]C,;-I:’ [0.0099,0.0475] [OOS’O'S]C,; I:, [0.17,0.83]
o900 % B\[o - [0.9519,0.04V B §o4,o.9896]
Py, 181 = 0[B) [py,5(y2 = 1|B Dy, 151 = 0|B) [py,5(y2 = 1B
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Example: log-domain

e Instead of m, store log(m)
e Increased dynamic range
e Product become sum

Probability domain: Log-domain:

Pay (0][0,1])= 0.0099 /(0.0099+0.0475)=0.17 Pey (0][0,1])= exp(-4.62)/(exp(-4.62)+exp(-3.05))=0.17
Pgy (1][0,1])= 0.0475 /(0.0099+0.0475)=0.83 Pgy (1][0,1])= exp(-3.05) /(exp(-4.622)+exp(-3.05))=0.83

py([0,1])= 0.0099+0.0475=0.0575 Py([0,1])= exp(-4.62)+exp(-3.05)=0.0575

pB(5) (B

PB
[0-5,0-5]<l»£? [0.0099,0.0475] [-0.7,-0.7]41‘ I:) [-4.62,-3.05]
= - - B [-4.61,-0.05]
[0-99,09/ \\[0.01,0.95] [-0.01, 3-% \\

Py, 1B(Y1 = 0|B) Ipy,|B(y2 = 1|B Py, |B(Y1 = 0|B) |pyv,5(y2 = 1|B
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Log-domain messages

e Go back and forth between messages and log-domain

Hfr—X; (zi) = Z (f(wh .+, TD) H/‘I’Xj_’fk (xj))
}

~{z; JFi

~{zi} aaéz

e (Can be avoided by using the Jacobian logarithm (aka max-star)

Lfk_)Xz ((L‘z) - MN{mz} lOg f(:cla v ?J;D) + Z LXg—»fk (:BJ)
— Defined recursively JF#i

M (Ly,...,Ly) =M(L1,M(Lg,...,Lz))
M (L1, Lg) = max (L1, L2) + log (1 = e"Ll_L2|)

— With core operation: 1 max + 1 table look-up
- Very efficient

e Example for variables x,,x, defined over {-1,0,1}

Mw{wl} (f(x17$2)) =M (f(xla _1)7 f((l?l,O), f(xlv +1))
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Continuous variables
e Interpret messages a probability mass functions
e 3 approaches

Make them discrete, and use known techniques

Parametric representation (e.g., Gaussian mixture); message = vector of
parameters

Non-parametric representation; message = vector of (weighted) samples
We focus on non-parametric representation for simple factor:

X Y
p— f(X;Y) r—

We assume we have a representation of the incoming message on X:
{Wk,Xk}, k:1..N
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Non-parametric representation: method 1

e Given N samples {w,,x, } of py(x) X
f(X,Y)

—

py(y) = A / £ (z,9)px(x)de

- /PY]X(M@PX(@dﬂC

/py]X(y|x) Z wrd(z — zx)dx

k=1

Q

N

= ZkaY|X(y|33k)

k=1

e Forevery x,, draw a sample y, from some nice pdf, weight v,

Yk~ Qy|x(y|zk)

pY|X(y|33k)
Vk Wk = unknown
QY|X(y|$k) _
X Wk f(xk’y) > known
ay|x(Ylze)
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Non-parametric representation: method 2

e Given N samples {w,,x, } of p,(x) X Y
_— f(X»Y) T —
py(y) = v / f(z,y)px (z)dx

- / Py x (W]2)px (2)dz

Q

/pY]X(y|$) Z wid(z — zx)dz

k=1

[
NE

wk-pY|X(y|33k)

£
|

1

e Draw x, from p,(x), draw a sample y, from some nice pdf, weight v,

T ~ PX (CU)

Ye ~ Qqy|x(y|Tk)

™

Vg X leX(y|xk) ~ unknown
qy|x (Yl|Tk) _
X f(a:k”y) - known
qY|X(?J|=’Ek) _
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Graphs with cycles

e Traditional approach
— Convert to tree using junction tree methods

y B B
a o |

e Modern approach
- when we normalize messages, SPA can still give good results

— MAPD are not exact, but approximations (except means for Gaussian models)
— Approximate MAPD are called “beliefs”

— Possible to compute an approximation of the likelihood (using a Bethe free energy approximation)

e Many of the practical applications of SPA involve factor graphs with cycles
— Turbo codes, LDPC codes, BICM-ID, MIMO detection, Multi-user detection
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Convergence behavior
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Turbo decoding example

e Typical behavior

100

80 -

go 4.0

40 ~

20 ~

Log-likelihood ratio
L=

-B0 -

-B0 -

-100
e a9 e <o <o <o o <
[Te] w [ @© (=2} o - N

- - -

Number of decoder iterations

<
<

1.0
3.0

00
13.0
14.0
15.0
16.0
17.0
18.0

Fig. 1. Bit convergence of a typical frame in which all errors are corrected.
(SNR = 1.77 dB, random interleaver).

Source: Reid, A.C.; Gulliver, T.A.; Taylor, D.P.; , "Convergence and errors in turbo-decoding,"
Communications, IEEE Transactions on ,vol.49, no.12, pp.2045-2051, Dec 2001
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CHALMERS

Turbo decoding example

e Sometimes

150

Log-likelihood ratio

-150

100

°S v g 2 8 B 8 8 8 ¢ 8 B 8 8 R R 8 8 8 8

Number of decoder iterations

Fig. 11. Bit convergence of a frame which shows large oscillations to 100
iterations. (SNR= 3.27 dB, constrained interleaver).

Source: Reid, A.C.; Gulliver, T.A.; Taylor, D.P.; , "Convergence and errors in turbo-decoding,"
Communications, IEEE Transactions on ,vol.49, no.12, pp.2045-2051, Dec 2001
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Convergence results for SPA

e General models
— Convergence is not guaranteed
- Even when converged, no guarantee on quality of the marginals

¢ Gaussian models p(x) o exp (—x Wx + b’ x)
= Hexp(—wijmixj) X Hexp(biacz-)
i, i
1. Convergence is guaranteed when W is diagonal dominant (Weiss, Freeman, 2001)
wii| > wiy|, Vi

JFi
2. Convergence is guaranteed when W=I-R, for which p(R)<1 (Malioutov, Johnsson, Willsky,

2006)
3.  When convergence is achieved, the means of the marginals are correct

When convergence is achieved, the variances of the marginals are typically too small

e Non-Gaussian models (Mooij, Kappen, 2007)
— Sufficient, not necessary conditions for convergence
— No guarantee on quality of the solutions
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Convergence results for SPA

e Rules of thumb
- Avoid short cycles
- Avoid strong interactions among variables

MOOIJ AND KAPPEN: SUFFICIENT CONDITIONS FOR CONVERGENCE OF THE SUM-PRODUCT ALGORITHM 4433
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Fig. 4. Comparison of various BP convergence bounds for the fully connected N = 4 binary Ising model with uniform coupling ./ and uniform local field 6.
a: Heskes’ condition, b: Simon’s condition, c: spectral radius condition, d: Dobrushin’s condition, e: improved spectral radius condition for m = 1, f: improved
spectral radius condition for m = 5, g: uniqueness of Gibbs’ measure condition. See the main text (Section VI-A) for more explanation.
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Outline

e Applications
e Background and terminology
e Bayesian detection
e Tool 1: Bayesian graphical models
— Basics
— Recipe for Bayesian inference
— Practicalities
— A worked example: a digital receiver

e Tool 2: Belief consensus
— Basics
— Convergence

e Applications revisited
e Variational interpretation
e Summary and conclusions
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Example

CDMPI.ETEI.Y REVISED AND UPDATED

6’:

Factor Com lete

graphs Do-It-

Yourself
‘ Manual

— —

-

From the Editors of Hafidyman
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Build your own factor graph receiver

e Transmitter

e Develop optimal bit-by-bit
detector

b, = b
k argggﬁp( kY)

e Implementin MATLAB (less than
20 lines)
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Now: MATLAB implementation

e |nLLR domain (1)

{4
A = log —=
1(0)

= log pu(1) — log p(0)
e Recall that

fra X php — log g + log
ta + pp — max’” (log g, log up)

e Other conversion rules COMPLETELY REVISED AND UPDATED ’ jJ”/'

log p1a (1) = +Aa /2 iy == ji—

log pa(0) = —Aa /2 actor Complete
ey DO-It-
ryourself
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Outline

e Applications
e Background and terminology
e Bayesian detection
e Tool 1: Bayesian graphical models
— Basics
— Recipe for Bayesian inference
— Practicalities
— A worked example: a digital receiver

e Tool 2: Belief consensus
— Basics
— Convergence

e Applications revisited
e Variational interpretation
e Summary and conclusions
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Motivation

e Many individual nodes/observers, form network

e How to perform distributed inference, optimization, or control without
centralized processing?

e Connection to flocking behavior
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Problem formulation

Model

N sensors, form a network, ‘N, = neighbors of node i
e Independent observation at sensori:y, € RM

e Prior p(x), x€{0,1}, known to all sensors

o Likelihood p(y:|x) known only to sensor i

e No packet collisions

Goal
o Compute p(x|y) at every sensor, without centralized processing
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Centralized approach

e Version 1: broadcast to fusion center

%

e Version 2: routing to fusion center
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